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Abstract

The eXtensible Markup Language (XML) is a generalised markup language based on
SGML. The following lecture notes present the XML standard as well as event-driven
XML processing and XML tree manipulation (SAX, DOM, XSL).

CR Categories and Subject Descriptors:

I.7.2 [Document and Text processing]: Document Preparation.
I.7.4 [Document and Text processing]: Electronic Publishing.
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1 Introduction

Computers handle data in many ways and formats, e.g., text, images, audio, and video.
When exchanging data, there is often a need for a standardised format that many ap-
plications can read and write. One such standard is the Extensible Markup Language

(XML) developed by the World Wide Web Consortium (W3C) and released in 1999.

XML uses tags to mark logical parts or elements in a text (see Example). Every element
is surrounded by a start tag (e.g., <name> and an end tag (e.g., </name> ). Tags are
useful when they are self-describing; the text is not only computer readable but also
easily understood by human readers.

<!-- Example of part of document instance -->

<university>
<department>

<name>
Department of Computer Science

</name>
<address>

Teollisuuskatu 23
</address>

</department>
<department>

<name>
Department of Mathematics

</name>
<address>

Yliopistonkatu 5
</address>

</department>
</university>

In the example above, we have a small example of a document instance. (Indentation
and line breaks are used to make the text more readable.). The instance (usually referred
to only as ’document’) contains a list of departments and their addresses. The tags have
been properly named to be self-describing. Element names such as university and
address give the human reader a clue how s/he should interpret the contents of the
elements. As seen in the example, elements may contain subelements that in turn may
contain subelements, etc. Note also how a comment is delimited by <!-- and --> .

The markup specifies the logical structure as opposed to the physical structure of the
document. The physical structure tells, e.g., how the different document parts are placed
on a physical page (paper, screen, etc.).

An XML document instance must conform to several constraints. An XML parser reads
an XML document instance and checks for errors. For example, all start tags must have
corresponding end tags (Note: there is one exception to this), and elementsmay not be in-
terleavedwhere an element partly overlaps another element, e.g., a start tag <address>
may not be followed by the end tag </name> of another element, as in
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Wrong! <name><address>Teollisuuskatu 23</name></address> .

Non-XML data, such as images in different formats may be stored separately as entities.
An entity manager assembles an XML document instance by including entities stored in
other files. XML parsers and entity managers are both examples of XML processors.

XML is actually a metalanguage that lets the user define a markup language. This gives
the user the freedom to choose any element names s/he wants (there are some system
names that are not allowed). Defining elements is done in a document type definition

(DTD). For each element, the user must give one rule specifying the name of the element
and what its content may be. We have an example of a DTD below.

<!-- Example of part of document type definition -->

<!ELEMENT university (department+)>
<!ELEMENT department (name, address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>

In the example, we have defined the elements in the document instance example. Each
element definition starts with the reserved word <!ELEMENT, followed by the element
name and its contents. The plus operator (+) indicates that a university element may
have one or more department subelements. A department element in turn consists of
two subelements, a name element and an address element. Both these elements contain
only text (defined by #PCDATA), i.e., they have no further subelements.

A DTD describes a document type. Every document conforming to this document type
is an instance of the DTD. DTDs are usually defined in separate files and referenced to in
XML document instances, but a DTD may also be included with an instance in a file.

XMLmarkup should describe the nature of the object, instead of describing howelements
are displayed and printed. XML markup can therefore be said to be generalised. It must
be noted that XML markup says nothing about how the tags should be interpreted. XML
markup describes the syntactical structure (form), not the semantics (meaning). Self-
describing tags are useful for human readers, but a computer must still be explicitly told
how to interpret that tags.

We also distinguish between descriptive markup and procedural markup. Markup is
descriptive when it denotes logical structure only. Descriptive markup also may use
self-describing tags to delimit elements. Procedural markup, overt (in old systems) or
now usually covert, means formatting operations, such as character font descriptions and
printing commands. Descriptive markup clearly separates, while procedural markup
mixes, content and form.

The output format is specified in a stylesheet. For every document type, we may specify
several stylesheets. By using alternative stylesheets for outputting the same document
instance, the user may produce very different versions of the same document (Figure 1).

Stylesheets can be defined in several languages, e.g., Cascading Style Sheets (CSS) and
XML Stylesheet Language (XSL).

XML is useful for data exchange applications. It may be used as a format for relational
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Figure 1: Formatting of an XML document

database systems. XML is also popular in document publishing applications, where
a database of XML documents may be used as a source for assembling and publishing
documents on different media. Related standards support hypertext links between doc-
uments and searching and finding document parts (XLink, Xpath, and XPointer), and
formatting documents (XSLT and XSL). Other standards describe the interface through
which XML documents may be accessed. Two such standards are SAX and DOM. We
will describe these standards later.

The Standard Generalised Markup Language (SGML) is a similar standard for docu-
ment markup, which was defined in 1986. SGML is a rather complex standard, providing
a lot a different possibilities for defining document markup. Despite being available for
such a long time (now 14 years), it has never been a success, mainly due to its complexity.
There has also been a lack for simple, cheap, easy-to-use SGML processors.

The Hypertext Markup Language (HTML), on the other hand has been a great success,
due to the immense popularity of the World Wide Web. As a matter of fact, it has been
so successful as a web page language that developers have provided their own feature
extensions to the language aimed for use in their own browser. Users on the other hand
have had (until recently) few possibilities to affect the outlook of HTML documents.

XML tries to combine the best aspects of these languages. XML is simple enough to use,
and to build tools for. On the other hand it clearly separates logical form from physical,
also giving the user the possibility to use self-describing element names and alternative
stylesheets. Quite a few tools and processors have already been developed for XML. In
the future, XHTML, an HTML version based on XML, is expected to replace HTML.

It must be said though, that XML may not be useful for all problems and their solutions.
Simply presenting database contents on the web, or building complex web pages is at the
moment donemuchmore easily in HTML (including extensions and plug-ins). However,
at the moment all three languages seem to be needed.

In this basic course on XML we will learn� How to write an XML document instance.
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� How to specify an XML document type definition (DTD).� How to use XML processors, such as XML editors, XML parsers, formatters.� How to write a style sheet for an XML file.

Other interesting subjects would be (if there is time) to learn� How to use XML for defining a web page.� How to use XML with Java.� How to use XML as a format for exchanging data.

There are no required prerequisites for this course, but it does help if you are used to
programming, word formatting and HTML.

In the next chapter, we will take a detailed look at XML syntax.

Literature and references

This chapter has been mainly based on Bradley’s The XML Companion [Bra00].

There is a huge amount of literature on XML: beginners’ guides, experts’ guides, XML
with Java, XML in publishing, etc. Here are only a few examples of what you can read
beside these lecture notes. Bradley [Bra00] gives an introduction to the subject. Many
parts of these lecture notes are based on his book. A book by Goldfarb and Prescod
[GP00] works best as a reference manual due to its extent.

XML is widely described on the web. Some useful pages to look at for a starters are:� http://www.w3.org/TR/REC-xml (XML definition)� http://www.xmlinfo.com� http://www.xmlsoftware.com� http://www.xslinfo.com

I also recommend Johdatus XML-tekniikkaan on the web page

http://www.cs.Helsinki.FI/u/ruini/structure/xml/

by Henry Ruini. Henry gives an introduction to XML in Finnish and has translated XML
terms into Finnish.

Relevant information for the course, e.g., example files and programs in these lecture
notes, is collected at

http://www.cs.Helsinki.FI/u/linden/opetus/xml/index .html
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Exercises

E-1-1 Give examples of a) descriptive markup languages, b) procedural markup lan-
guages, and c) meta markup languages.

E-1-2 Why do you want to separate logical structure from physical layout?

E-1-3 Why do you think DTDs are defined in separate files, not in the same files as doc-
ument instances?

E-1-4 Visit the URLs listed above. What useful information do you find?

E-1-5 Search the web for a) XML beginners’ guides b) the complete XML standard.
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2 Document instances

In this chapter we will learn how to write an XML document instance.

2.1 Elements

In an XML document, we use tags to separate logical elements. A logical element may
consists of any text string and/or subelements in the document. We have, e.g., the fol-
lowing element

<capital>Helsinki</capital>

The element starts with a start tag <capital> and ends with an end tag </capital> .
Between the tags, we find the contents Helsinki of the element. Note that an element
includes its start and end tags as well as its contents. A tag always start with a less-
than character (<) or the string </ and ends with the greater-than character (>, or in some
cases /> ). These characters/strings are also called delimiters. The element name is given
between these characters (strings) and is context-sensitive, e.g, the start tag <capital>
differs from the start tag <Capital> . A start tag must always have a corresponding end
tag (with the same name). Element names may include small or capital letters, hyphens,
underscores, periods, colons and digits. An element name must always start with a letter,
an underscore or a colon, but there is no restriction on its length.

In the above example, the element includes text as content. But, an element may also
include subelements as in

<country>
<cname>Finland</cname>
<capital>Helsinki</capital>

</country>

where we have a country element including two elements, a cname and a capital
element. If an element includes other elements and only elements, we say that it has
element content. If it includes only text (as the cname and capital elements), we say
that it has data content. An element containing both element and data content hasmixed
content. As we shall see later, e.g., spaces and line-ends included in elements with either
element or data content are usually processed differently.

Subelements included in elementsmust always be completely enclosed in the (super)element
(i.e. elements are nested). For example, in the following example

<small_example>
<first>this is<second></first>so wrong</second>

</small_example>

two elements, the first and the second elements are interleaved, and the example
does not form a well-formed1 document instance. A document is well-formed when it1The concept well-formedness differs from the concept validity, which is defined in the next chapter.
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has exactly one root element that contains all other documents and when all start tags
have corresponding end tags and and all subelements are properly contained in their
superelements (i.e., no interleaving is allowed).

A document instance then always forms a hierarchyof elements, where we have one root
element in which all other elements are included. Therefore, XML document instances
are often presented as trees (which are hierarchical!). The well-formed example above
may be presented as

country

cname capital

Finland Helsinki

A tree is a collection of nodes, one of which is distinguished as the root, and a relation
(ancestor) that places a hierarchical structure on the nodes. In this tree, the country
element represents the root, and the subelements cname and capital children of the
root, which thereby is their parent. Nodes that have the same parent are called siblings.
Nodes that do not have any children are leaves. In the tree above, the data contents of the
data elements cname and capital have been represented as children. (We have used
only the element names, not the tags, to label the tree; a tree is labelledwhen the nodes
are given names.)

An element may have empty content as in

<nothing></nothing>

Empty elements can (and usually should) be represented with a single tag as

<nothing/>

Note that the tags slightly differs from the start and end tags above; here we have a slash
at the end of the tag.

But why do we need empty tags. There are several reasons. Some times the real contents
of the elements is found elsewhere (outside the document instance), and the (empty)
element only includes a reference to where the contents are as in the following image
element

<image file="small_picture.jpg"/>

An XML processor will read the empty tag and its reference and replace it with the image
found in the referenced file.

If we for some reason also want to mark document parts that are not properly nested, we
can do it with empty tags, e.g.,

<another_small_example>

<paragraph>This is <revised_start/> a text that has
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been revised.</paragraph>

<paragraph>And the revisions<revised_end/> spans
several paragraphs.</paragraph>

</another_small_example>

In the above example, the revised text spans several paragraphs. We cannot have a start
tag <revised and an end tag </revised> replacing the empty tags<revised_start/>
and <revised_end/> (why not?).

We can create an XML document instance by simply inserting two tags, a start tag at the
beginning and an end tag at the end, in any ordinary text document. But more useful may
be to use finer granularity. Markup is useful for presenting the document in different
formats, and also for structural search. If we use the following granularity

<usa>
<state>

Washington
Seattle

</state>
<state>

Washington D.C.
Washington

</state>
</usa>

we can look for the string Washington in the full text and find all occurrences, i.e., both
states listed above. But if we use finer granularity, such as

<usa>
<state>

<state_name>Washington</state_name>
<capital>Seattle</capital>

</state>
<state>

<state_name>Washington D.C.</state_name>
<capital>Washington</capital>

</state>
</usa>

we can look for states whose capital is Washington and find only the correct occurrence
(i.e., the state Washington D.C., not the state Washington whose capital is Seattle). An
XML processor may also format the subelements differently, such

Washington: Seattle

Washington D.C.: Washington

Usually, writes of XML documents are recommended not to use lesser-than or greater-
than characters in data content in order not to confuse data with tags. Instead there are
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certain reserved entities, such as &lt; and &gt; to use instead. However, many XML
processors can handle these characters. For example, an XML editor lets the user write
2 < 3 as data content which is also the string shown on the screen (paper etc.). But
internally, the editor may replace this string with 2 &lt; 3 .

An XML processor can check if a document instance is well-formed. It would be useful,
if we could also define what type of elements an instance may contain. This is done in a
document type definition (DTD) which we define in the next chapter. But first we shall
take a look at some other concepts that may be included in an XML document instance.

2.2 Attributes

Elements may have attributes. An attribute holds additional information about the ele-
ment. An attribute and its value is given in the start tag of the element. For example, we
have the following example.

<book author="Albert Einstein">
...
</book>

The book element contains one attribute with name author and whose value is a string
Albert Einstein . Attribute names are also case-sensitive and follow the same re-
strictions as element names. As element names, they may contain letters, digits, periods,
colons, hyphens, and underscores and must begin with a letter, an underscore or a colon.
An attribute value may be any string surrounded by single or double quotes. Single or
double quotes in the value may be included by using entities &quot; (double quote) and
&apos; (single quote).

Note that attributes are always single-valued. If an attribute has several values, they are
are specified in one string, such as

<book keywords="XML SGML">
...
</book>

In this case it is up to the XML processor to analyse the string value and extract two
keywords.

There are a few reserved attributes in XML. The attribute xml:lang specifies a language
for an element. Its values should be taken from the standard ISO 639 defining languages
(see Appendix B). Some language codes are en , fi , sv for English, Finnish and Swedish.
We can have for example

<product>
<paragraph xml:lang="en">
...
</paragraph>
<paragraph xml:lang="fi">
...
</paragraph>
</product>
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for a passage in a book containing descriptions of a product in two different languages,
English and Finnish.

The language code may be combined with a country code from the standard ISO 3166
(see Appendix C). Some examples of country codes are GB, US, FI and SE for Great
Britain, the United States, Finland and Sweden. We may have

<product>
<paragraph xml:lang="en-GB">
What colour is it?
</paragraph>
<paragraph xml:lang="en-US">
What color is it?
</paragraph>
</product>

for specifying a paragraph element in British or American English or

<paragraph xml:lang="sv-FI">
...
</paragraph>

for specifying Finnish Swedish.

The content may also be a user-defined code in which case it must be preceded by x-
(such as x-turku_dialect ) or it may be one registered with IANA (Internet Assigned
Number Authority) in which case it must be preceded by i- (such as i-yi , meaning
Yiddish).

White space (spaces, line ends, tabs) are usually a problem in XML documents when they
are processed. Should the white space be included in the output or removed. By default,
space included in elements with only element content is considered insignificant space

(and is not included in any processing) while space included in elements with data or
mixed content is considered significant. The reserved attribute xml:space lets the user
override the default interpretation. A value of preserve will preserve the white space
in any element. (The other value is default and does not have to be set if the user does
not want to change the default interpretation.)

We will look at how to define attributes and their value types in the next chapter.

2.3 Entities

Entities are units of information that may be stored in separate files. Entities are used
to allow duplication or to allow different representations (other than XML data). Entities
are also used for splitting large documents into subdocuments.

Internal text entities represent constant strings. This is a convenient way to use a shorter
reference to a long string that may be used several times. A text entity may also be ex-

ternal (located outside the document). Such an entity contains (also called parsed entity)
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Entity code corresponding character
&gt; >
&lt; <
&quot; "
&apos; ’
&amps; &

Table 1: Some predefined entities

contains replacement text. External entities can also be binary entities containing draw-
ings, pictures, sound, video, etc. Finally we distinguish between general entities which
are used in document instances and parameter entitieswhich are allowed in DTDs only.

Assume the text entity &univ; contains the string University of Helsinki and the
text entity dep; the string Department of Computer Science . Then we can write

I study at the &dep; of the &univ;.

In order to use such entities, they must be defined. We will study the definition of entities
in the next chapter.

Some entities have been predefined (see Table 1).

Many XML editors are able to hide to entity codes from the user and use corresponding
characters instead. Predefined entities are used as text entities.

The symbol &lt;capital&gt; is an XML start tag.

An XML processor must of course be able to process entities correctly, e.g., replace text
entities with replacement text before outputting a document and including binary entities
(e.g. a picture) and presenting it in a required way in the document.

2.4 Processing instructions

Processing instructions allow documents to contain instructions for applications. A pro-
cessing instruction is surrounded by delimiters <? and ?> and contains a keyword (what
application does the instructions concern) and and information (what should the applic-
ation do).

All XML documents should include an XML declaration in the form of a processing in-
struction specifying what version of XML is used, what character encoding the document
uses and where its DTD can be found (if it has one). An example

<?xml version="1.0" encoding="UTF-8" standalone=’yes’? >

This declaration says that the version used is 1.0, that the character encoding is UTF-8
and the standalone parameter tells that there are no external definitions that need to be
taken into account when processing this document.
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Literature and references

The best source for XML syntax is of course the W3C recommendation found at

http://www.w3.org/TR/REC-xml .

Readers are referred to this definition for a more detailed description of XML.

Exercises

E-2-1 What distinguishes a well-formed document from an ”unwell-formed” one? Give
examples.

E-2-2 What XML markup would you suggest for the following telephone catalog?

Suomalainen Kaisa arch. Pelimannink 679 ............3241 9884
Kalle Tuusula Hiekkaharju Koivukylä Koivut 5 J 6..4110 895 6
Kari and Rita Korppaanmäent. 21 B ................ 345 430 2

Suomela Maila salesman ............................ 789 986

E-2-3 What XML markup would you suggest for the following description?

The Department of Computer Science was founded in 1967 when the first professorship in
computer science was established at the University of Helsinki. The Department belongs to
the Faculty of Science, and it is located in Vallila, Helsinki. In Finland, the Department is
the largest computer science department in a full-fledged university.

The educational programme of the Department is divided into three subprogrammes: Com-
puter Science, Applied Computer Science and Teacher in Computer Science. The subpro-
gramme Computer Science is further divided into five specialisation areas, which correspond
to the research areas of the Department: algorithms and data structures, intelligent systems,
software engineering, distributed systems and data communication, and information sys-
tems.

The aim of the programme is twofold. Firstly, the programme strives to provide a modern
and all-round advanced level education of computer experts for the needs of the industry
sector. Secondly, the Department seeks to be among the top-most research institutes within
selected research areas of computer science.

Education at the Department is based on the established core computer science but adapts
to new needs of the evolving discipline. The combination of theory and practice is stressed,
and special emphasis is given to software design and engineering.

In research and in education, cooperation with the rest of the university and with the
industry sector is considered to be of great significance. The Department has joint re-
search activities with several departments of the University of Helsinki and with several
information-technology oriented departments of other universities. In addition, the Depart-
ment has research cooperation with approximately 40 different companies (1999).
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3 DTD syntax

A DTD or document type definition defines the structure of a document (or document
type). It contains rules that regulate how different elements and attributes relate to each
other: what subelements (children) may an element have, which parents are possible, etc.
In short, what hierarchy of elements should be allowed in a document instance. A DTD
also tells what attributes elements can have, and what default values these attributes may
have.

We have seen earlier that a document that conforms to certain restrictions is a well-
formed document. In a well-formed document, there is one element that represents the
root of the hierarchy and all other other elements are properly contained in the root ele-
ment and/or other elements. A well-formed document is not dependable on a DTD.

When a document instance conforms to a certain DTD (i.e., it follows all the rules spe-
cified in the DTD) it is said to be valid. Validity is usually checked with an XML parser
that checks well-formedness as well. As a matter of fact, it may be hard to find an XML
parser that checks only well-formedness.

In short, well-formedness does not depend on a DTD; we can always say if a document
instance is well-formed or not, even if we do not know if it has a DTD or not. Validity
always requires that the document instance has a corresponding DTD against which the
instance can be checked.

A DTD is optional, but usually recommended. A DTD makes XML processing easier,
when we know what structures a set of document instances may have.

In the following, we shall take a look at defining DTDs, and especially see howwe define
elements and their possible contents, attributes of elements and value domains and de-
fault values of attributes, and entities.

3.1 Element definitions

An element is defined in an element declaration. We have the following example

<!ELEMENT country (capital)>

An element declaration starts with the delimiter <! and the keyword ELEMENTand ends
with the delimiter >. After the keyword follows the element name (in this case country )
and the element content. Element content declaration, called the content model, is sur-
rounded by delimiters ( and ) . This declaration says that a country element has one
subelement, a capital element (no more, and no less).

An element may also have several subelements. These elements are declared as a se-
quence in the content model separated by a comma (, ). For example, in the declaration

<!ELEMENT country (cname, capital, population)>

we have a country element that contains exactly three subelements, a cname element,
a capital element, and a population element, in that order.
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An element may have alternative subelements, separated by a bar (| ). For example, we
have the declaration

<!ELEMENT country (cname | official_name)>

where the country is required to have exactly one subelement, either a cname element
or a official_name element, but not both.

An elementmay also be declared to have optional subelements and/or repeatable subele-
ments. Optional elements are marked by a question mark (?) as in

<!ELEMENT country (cname, capital, population?)>

where the country element may have two or three subelements — the population
element is optional.

Repetition is specified by a star (* ) or a plus (+); A star means that a subelement may be
repeated zero (i.e. it is optional) or more times; a plus means that a subelement may be
repeated one or more times. For example, in

<!ELEMENT country (cname, capital, city*, neighbour_coun try+)>

the country element may have zero or more city subelements, but it must have at least
one (or more) neighbour_country subelements.

Elements are grouped by parentheses in a content model. A repeatable group, e.g., is
specified by

(city, city_population)*

Elements may also have data content. Data is specified by the reserved word #PCDATA,
which stands for parsable character data. We have, e.g.,

<!ELEMENT cname (#PCDATA)>

which declares that a cname element contains text (instead of subelements).

An element that may contain only other elements are said to have element content. If
it contains only data it is said to have data content. If it may contain both, it has mixed
content. We have, e.g.,

<!ELEMENT paragraph (#PCDATA|sub|super)>

where a paragraph may contain either data, a sub element or a super element. In the
element declaration, the first token in the content model must always be #PCDATAwhen
the element has mixed content.

An empty element is declared by
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<!ELEMENT image EMPTY>

This means that a valid document may only contain <image/> (empty) elements, but
not, e.g., <image></image> elements.

Finally, an element may be declared to have any content, as in

<!ELEMENT some_element ANY>

This means that the some_element may contain any other elements that are defined in
the DTD.

Finally let’s take a look at a short DTD for describing a dictionary.

<!ELEMENT dictionary (word_article*)>
<!ELEMENT word_article (head_word, pronunciation, sense +)>
<!ELEMENT head_word (#PCDATA)>
<!ELEMENT pronunciation (#PCDATA)>
<!ELEMENT sense (definition, example*)>
<!ELEMENT definition (#PCDATA)>
<!ELEMENT example (#PCDATA)>

A valid document instance may contain elements such as

<document>
<word_article>

<head_word>
kill

</head_word>
<pronunciation>

kil
</pronunciation>
<sense>

<definition>
If you say that you will kill someone ...

</definition>
<example>

I’ll kill you if you don’t ...
</example>
<example>

I could have killed them by accident.
</example>

</sense>
<sense>

<definition>If you kill time, ...
</definition>
<example>

He spent long hours keeping out of the way, killing time.
</example>

</word_article>
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<word_article>
<head_word>

laps
</head_word>
<pronunciation>
læps
</pronunciation>
<sense>

<definition>
A lapse is a period of time.

</definition>
</sense>

</word_article>
</document>

3.2 Attribute definitions

Attribute of an element are defined in an attribute list. All attributes of an element are
usually defined in one list. If there aremultiple definitions of an attribute of the same ele-
ment, the first definition takes precedence. We have the following example of an attribute
list

<!ATTLIST country population NMTOKEN #IMPLIED
language CDATA #REQUIRED
continent (Europe | America | Asia ) "Europe">

An attribute list starts with the string <!ATTLIST followed by the name of the element
to which the attributes belong, in this case country . After the element name follows
a list of attribute names, their value types and their default values. Attribute names
are restricted in the same way as element names. In the example above, the country
element has three attributes, population , language , and continent .

The second parameter describes the value type. In XML, there are the following value
types:

CDATA
NMTOKEN
NMTOKENS
ENTITY
ENTITIES
ID
IDREF
IDREFS
notation
name group

Attributes of the type CDATAmay contain values that are (any) text strings, e.g.
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<country language = "American English">

The NMTOKENtype indicates any (single) token or word that is formed as element names
except that it may start with any allowed character, e.g., a digit. The NMTOKENStype
indicates that the attribute may have multiple values. These values must be separated by
spaces. Regarding the example attribute list, we could have

<country population = "100">

Assume that there is an attribute coordinates that has been declared NMTOKENS. Then
we could use it in the following way.

<country coordinates = "60 25">

The ENTITY type indicates that the value is actually an entity (Entities, see next subsec-
tion). An element may be a placeholder for an image as in

<!ENTITY mypicture "123.jpg">
<!ELEMENT pic EMPTY>
<!ATTLIST pic picfile ENTITY ...>

In a document instance, we may write

<pic picfile="mypicture">

and an XML processor would know where to find the image.

As in the case with NMTOKENS, an attribute can be declared to have multiple entities as
its values (with ENTITIES ).

The value types ID , IDREF and IDREFS are used for hypertext linking.

The name token group restricts values to a finite set of values. In the case above, the
continent attribute may only take values from the enumerated list following the at-
tribute name.

All attribute values are case-sensitive.

The third parameter in the attribute list is the default value of the attribute. A default
value #REQUIREDmeans that every time the element is used in an instance, the attribute
must be given a value. If the default value is #IMPLIED , the attribute may be absent from
the element. In the example above we may have

<country population="5" language="Finnish" continent=" Europe">

and also

<country language="Finnish" continent="Europe">
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but we may not leave out the language attribute because it is declared #REQUIRED.
Note also that we cannot write

Wrong! <country population language="French" continent= "Europe">

If an attribute name is given, also its value must be given.

A name token group can be followed by a specific default value as in the case above
where the continent attribute can take three values, out of which the token Europe is
the default value. If the attribute is absent in an element, the default value is assumed. In
the example above, we could have

<country language="Finnish">

instead and the attribute continent would be assumed to have the value Europe . Note
that required or implied attributes cannot have a specific default value.

Attributes can also have constant values. These values are preceded by FIXED as in

<!ATTLIST country position #FIXED "independent">

It might seem strange to use constant attributes, but they are useful in some cases not
discussed here.

An element can have multiple attribute lists. If an attribute with the same name is de-
clared in a list appearing later, the first declaration takes precedence.

3.3 Element or Attribute?

It is sometimes difficult to say, when designing a DTD, if one should use an element
or an attribute to describe something. The rule of thumb says: Use an element, if the
structure may contain substructures, otherwise use an attribute, especially if it concerns
administrative information not shown in the output. Note also that attributes can be
constrained and validated, but text in elements cannot. On the other hand, e.g., style
sheets may have limited capabilities for processing attributes.

3.4 Entity definitions

An XML document may be divided into several separate files. In this way, it is easy to
reuse a document part in several XML documents. Each unit is called an entity and must
be assigned a name to recognise it.

Only the top document, the document entity, does not have a name. The document
entity includes references to other entities located outside it. A parser will be given the
document entity to read and check; the parser will know from the entity references how
to assemble to complete document. The document entity may also be the only entity
involved (i.e., the document is completely included in one file).
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All entities must be defined using entity declarations. Entities are used through entity
references. Entities can consists of XML data or some other format (binary). The content
of the entity may be stored within the main document (internal entity) or in a separate
file (external entity). An entity that contains XML data is said to be aparsed entity (either
internal or external) because it can be validated by an XML parser.

Internal text entities represent a pre-defined constant string. The user may define a
short entity name representing a long string; instead of repeating the long name s/he
ony gives the entity reference wherever the string is needed in the document.

An internal text entity is defined in the following way.

<!ENTITY univ "University of Helsinki">

The declaration begins with the delimiter <! and reserved word ENTITY. Thereafter fol-
lows the entity name and the replacement text, and finally the delimiter >. Whenever the
user wants to include the replacement text in the document, s/he only has to repeat the
entity reference starting with an ampersand and ending with a semi colon such as

I study at the &univ;.

An XML processor (parser) will know to replace the entity reference with the replacement
text and output

I study at the University of Helsinki.

The replacement text can be surrounded by either double or single quotes. If a quote
should be included in the replacement string, the entity can either be defined with the
other sort of quotes, or the entity may include references to built-in entities. For example,
the declaration

<!ENTITY sentence ’His foot is 12" long’>

can be replaced by the declaration

<!ENTITY sentence "His foot is 12&quot; long">

Built-in entities There is a small number of built-in entities (see previous chapter).
Within text, the user should use references to these built-in entities instead of the ac-
tual strings themselves. Especially, care should be taken not to include double quotes
in an entity declaration surrounded by double quotes (and correspondingly with single
quotes).

Character entities A character entity contains one character and its reference begins
with an ampersand and a hash symbol. For example, the reference

&#60;

refers to the symbol <, the character with the decimal value 60 in the ASCII character set.
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Parameter entities make it possible to define replacement texts also in the DTD. A para-
meter entity may be used only in the DTD! A parameter entity is defined as

<!ENTITY % parapart "(emph | supersc | subsc)">

It is used, e.g., in an element rule, in the following way.

<!ELEMENT paragraph (%parapart | bold)>

Especially, note the use of the percent character. The element declaration is equivalent to
the declaration

<!ELEMENT paragraph (emph | supersc | subsc | bold)>

A parameter entity is useful when many element declarations contain similar parts.

External text entities An external entity must be defined with a system identifier, a
reference to the file where it is located. The reference must be preceded by the SYSTEM
keyword such as in

<!ENTITY myfile SYSTEM "/extra_files/file.xml">

(The system identifier can also be a public identifier, a general reference to more remote
information. In this case, the entity is declared using the PUBLIC keyword. An applica-
tion must then map the entity reference against a catalog in order to find the entity.)

Binary entities A binary entity may contain, e.g, a picture or or some other non-XML
data. Including the system identifier (the location), we must also specify the format of
the binary data as in

<!ENTITY myphoto SYSTEM "/figures/photo.gif" NDATA GIF>

References as above cannot be used in this case. Instead an empty element is used with
an attribute of type ENTITY:

Take a look at my photo <picture name="myphoto"/>.

Usage of entities

Ageneral entity such as a text entity referencemay be used in an element but not in DTDs.
Parameter entities may be used only in DTDS. There may be entity hierarchies, i.e., an
entity declarationmay contain the reference to another entity (but no cyclic declarations!).

No textual references are allowed if the entity contains non-XML data. The only place
such an entity reference can occur is as an attribute value.

Parameter entities may not be used in a document instance, only in a DTD.
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3.5 Processing instruction definitions

Processing instructions are not defined.

3.6 Document type declaration

If a certain DTD has been used in an XML document, it should start with a document

type declaration. The declarationm identifies the document element (the root element)
of the instance. In its simplest form, the declaration looks like

<!DOCTYPE catalog>

The declaration is delimited by <! and > and includes the reserved word DOCTYPEand
the name of the root element, which would follow the declaration (containing then all the
other elements). If the DTD is inlcuded in the same file as the instance, we would have

<!DOCTYPE catalog [
... The catalog DTD appears here ...
]>

If the DTD is located in a separate file, there must be a reference from the instance to the
DTD. In that case we have

<!DOCTYPE catalog SYSTEM "catalog.dtd">

The file where the DTD is defined is specified after the SYSTEMreserved word.

Literature and references

This chapter has been mainly based on [Bra00].

Exercises

E-3-1 Write a DTD for the markup you made for the text in example E-2-2.

E-3-2 Write a DTD for the markup you made for the text in example E-2-3.

E-3-3 Give examples of different entity types. (This task will require you to look things
up in an XML book, or on the web).

E-3-4 Why is the following document instance not valid? (The DTD is given in Sec-
tion 3.1.)

<document>
<word_article>

<head_word>
kill
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</head_word>
<pronunciation>

kil
</pronunciation>
<sense>

<definition>
If you say that you will kill someone ...

</definition>
<example>

I’ll kill you if you don’t ...
</example>
<example>

I could have killed them by accident.
</example>

</sense>
<sense>

<definition>If you kill time, ...
</definition>
<pronunciation>

kill
</pronunciation>
<example>

He spent long hours keeping out of the way, killing time.
</example>

</word_article>
<word_article>

<head_word>
<word>

laps
</word>

</head_word>
<pronunciation>
læps
</pronunciation>
<example>

Hours lapsed between the phone calls.
</example>

</word_article>
</document>

E-3-5 XMLpro

Try out the XMLPro editor by Vervet Logic (www.vervet.com ). You find a demo
version in the directory /home/group/xmltools/editors/xmlpro/

Start the editor with the command

java -jar /home/group/xmltools/editors/xmlpro/xmlpro. jar

You find example XML files in /home/group/xmltools/editors/xmlpro/Examples/

Answer the following questions

1. Load an example file, e.g., catalog.xml . Take a look at the XML document
instance and the DTD. What happens when you insert an element? IN the
wrong place (according to the DTD)?
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2. Create your own small DTD and instance, e.g., based on earlier exercises.

E-3-6 Morphon XMLEditor

Try out the Morphon XML editor in the same way as above. You find a demo
version in the directory /home/group/xmltools/editors/morphon/ .

Start the editor with the command

/home/group/xmltools/editors/morphon/XMLEditor/runX MLEditor 1.2.sh

E-3-7 Read in and check the document instance in the Exercise E-3-1 (or E-3-4 available
at the course home page, see exercise 2) and its corresponding DTD in some XML
editor. Did you find all the faults the first time you saw the instance? Does the
editor help finding other errors?

E-3-8 Take a look at http:www.xmlsoftware.com . What other XML editors can you
find. Try out a few.
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4 Document modelling

DTDs are very important. They show authors of XML documents what structure the
instances should have. They are also needed when validating document instances. If
the DTD is not appropriate or suitable for the application, or if it simply contains the
wrong declarations, the consequences could be disastrous. A change in a DTD at a later
stage, e.g., of including an obligatory element or attribute, would mean that all document
instances that (should) conform to the DTDmust be changed. If the DTDhas been widely
used, i.e., if there are a lot of document instances, an update in the DTD would require a
lot of effort. So as a good design principle, great take should be taken when designing a
DTD.

Building a DTD may require many skills where the DTD designer should be aware of
both features and limitations of the DTDs.

4.1 Document analysis

An XML based system is usually built from an existing procedural document system.
A standardised DTD is chosen (and possibly modified) or a DTD is constructed from
scratch. The procedural markup is replaced with XML markup. In-house styles may
have been used for different (procedural) documents; the DTD designermay benefit from
descriptions of these as well as from the procedural documents themselves. If there are,
however, plenty of documents, using them all as background for building the DTD may
not be feasible.

Procedural markup often gives the document writer artistic freedom to write different
kinds of documents, where s/he, e.g, can take into account the outlook of the document
on different media (by including formatting commands in the markup). This freedom
may not be implementable in XML which separates the logical content from the physical
layout. XML, on the other hand, ensures that applications get predictable input in a way
defined in the DTD.

Still however, by simply studying examples of documents, we can set up aDTD by asking
for each feature (information object, or the like)� if it has a name,� if it appears more than once,� or if it must not appear more than once,� what information should directly precede or succeed it (i.e., sequence order),� if it can be divided into smaller units, and� if it contains constant text that does not change in objects of the same type (this

constant text could be generated automatically)

If the documents have been stored in a database, there might be a database schema de-
scribing their structure. This schema could be highly useful for defining the DTD. An
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example notation for concept schemas is the entity-relationship diagram (ER diagram)2.
ER diagrams contain descriptions of entities (= objects) and their relationships, such as
one-to-one and one-to-many relationships that could have direct correspondences in the
DTD.

The DTD designer should also take into account future uses of the DTD (and its docu-
ment instances). For example, finer granularity could be used than what is necessary at
the moment. In current practice, the user may not want to separate between first and last
names, but uses one element that contains both names, such as

<name>Matti Meikäläinen</name> .

In the future, s/he would perhaps like to output the last name in a different style (font,
size, etc.) than the first name; then it would be useful to have, from the start, markup that
separates the two names such as

<name><fname>Matti</fname><lname>Meikäläinen</lna me></name>.

4.2 DTD design

There are several specific questions to answer when designing a DTD: should an ex-
isting DTD be used or a new one be constructed, what names should be given to ele-
ments, should we use an element or an attribute, how should the rules be arranged in the
DTD, what comments should be included, should the DTD be modularised somehow,
etc. Design is also concerned with determining what elements and subelements to use,
how to determine in what order and relationships they should occur, etc.

When it comes to naming options, a consistent style should be used. Element and at-
tribute names are case-sensitive, and the designer should decide on upper or lower case
(such as someelement or SOMEELEMENT). In some cases, also a mix of lower and up-
per case might be motivated (such as SomeElement ), but an arbitrary mix should be
avoided. The names might of course also include underscores or hyphens for readability
(some_element ).

Self-describing names are useful, when the designer and especially document markup
writers have to remember what the objects (elements, attributes, entities) stand for. Names
should naturally also be unambiguous. These two principles might, however, lead to
very long names resulting in longer documents where the markup takes considerable
space compared to the text content of the document. Shorter names, when used regu-
larly, may be easily remembered, but are usually not self-describing. Here a reasonable
balance between clarity and brevity should be found.

4.3 Recognising content, structure and presentation

Components can reflect different amounts of information about meaning versus format-
ting. Content-based components (elements) indicate what the information means in an2Do not confuse ER diagram entities with XML entities. An entity in an ER diagram corresponds to a
(real-world) object and the corresponding component in an XML document instance could be an element!
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abstract sense but avoids saying anything about its appearance. Content-based compon-
ents correspond most closely to real world objects. Examples are� addresses, streets and postal codes� product names, quantities, prices� recipes, ingredients, temperatures, preparation times

Content-based components can increase the processing potential of the data and they are
the ones that best agree with the XML philosophy of separating content and form.

Structural components indicate the publishing structure. Examples include� paragraphs� lists and items� chapters, sections, subsections, etc.� tables

They usually describe a more general document structure but are limited when it comes
to the processing potential. A table, e.g., may contain product data or addresses or in-
gredients; a processor would not know the difference.

Presentational components indicate how the information should look. Examples include� special fonts or point size� regions to keep on a line or a page� line breaks, page breaks.� indented regions

Presentational components might be usedwhen absolute control of presentation is needed,
but they do go against the XML philosophy of separating content and form. They should
be avoided because their place is usually in the style sheet.

The goal would be to avoid purely presentational items when a formatter can provide
the formatting information automatically deduced on content-based (or structural) in-
formation. For example, page numbers should not be included in XML documents.
Single-source components should be identified, i.e., components that are defined once
but printed in multiple locations. Examples are marginal headers and footers which
are repeated on each page within a section, then changed when a new section begins.
A processor/formatter should be able to find the component and then output it where
appropriate. Generally, if a component could be retrieved from a database (existing or
planned), the information most likely needs a content-based component.
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Another problem could be to recognise nested components where they are needed. Pro-
cedural markup is often flat, while XML (almost) assumes logical components containing
subcomponents. Subcomponents may be identified, e.g., by noticing that there are sev-
eral components of the same type in sequence. The question then to ask is whether there
is a supercomponent containing them all. The same goes for components that appear in a
group with a specific order; taken together they might represent a higher-level compon-
ent.

4.4 Element or attribute

It is sometimes difficult to say, when designing a DTD, if one should use an element or an
attribute to describe something. The rule of thumb says: Use an element, if the structure
may contain substructures, otherwise use an attribute, especially if it concerns adminis-
trative information not shown in the output. Also, if the information is a simple choice of
options, we would use an attribute instead of an element, selected from a finite set. Note
also that attributes can be constrained and validated, but text in elements cannot. On the
other hand, e.g., style sheets may have limited capabilities for processing attributes.

4.5 Industry standard DTDs

A DTD does not always have to be built from scratch. An industry standard DTD is a
DTD that has been agreed on by several organisations. SeveralDTDs have been standard-
ised or proposed, such as DTDS for publishing (BOOKDTD), for encoding mathematical
formulas (MathML), etc. Many DTDs are also being converted from SGML to XML (there
are, after all, small syntactical differences).

A standardised DTD is useful when sharing information. Two organisations may agree
on a specific DTD for describing their data, and applications at both organisations will
then rely on this structure. Standardised DTDs tend, however, to be rather complex.
In order to satisfy many needs, they are usually big and flexible. In fact, they may be
too flexible (allow too many different document structures) and must be adjusted to the
needs of a certain organisation.

Usually it is better to choose an existing DTD (and modify it) instead of creating a new
DTD. Modificationmay include removing redundant elements and tightening rules (e.g.,
requiring that an optional element is always present or absent). Tightening of context and
occurrence rules does not affect the validity of the document instances. Nor does removal
of optional elements. Instances conforming to the modified DTD should also conform to
the original one. Removal or addition of required elements to the DTD, however, will
probably result in cases where document instances do not conform to the original DTD.
(But before transfer, extra elements can be removed or missing elements added where
data content is empty.)

4.6 Setting up the DTD

For writing a DTD, a standard text editor may be used. The user must then take care not
to make any mistakes in the DTD syntax. For more professional use, an XML editor or a
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special DTD design tool give more support for building a DTD.

A DTD should include a comment of its purpose and scope: what is its primary use,
who wrote the DTD, when was it created, etc. Notation declarations3 should start the
DTD and entity declarations should follow. Thereafter, the element declarations are in-
cluded, usually in the order they appear in the structure hierarchy, starting with the root
element. Attributes of an element are usually declared in one list, following the element
declaration. Comments could be used to explain about (non- self-describing) element
and attribute names.

In the following is a list of tasks to be performed when designing a new DTD.

1. Identify potential components (elements, attributes, entities).

2. Classify components — sort components into classes and subclasses.

3. Validate the needs — compare your list of potential components with work done
before. Do you need all the components or are some components missing.

4. Select semantic components — select the components you will actually need from
your original list.

5. Build the upper part of the document hierarchy — decide which component rep-
resent the root, what subcomponents does it have, etc. Use tree diagrams.

6. Build the information units, i.e., specify lower-level parts of the document hier-
archy.

7. Build the data-level elements that have only data-content (no subelements).

8. Populate the branches — specify what text you can find in data-level elements.

9. Make connections — identify links, special features (attributes for presentational
matters, processing instructions, etc.) and entities.

10. Validate the design.

Literature and references

Bradley [Bra00] contains a general chapter (Chapter 6) on document modelling. Maler
and El Andaloussi [MEA96], although talking about SGML DTD design, give several
good principles for building DTDs. The more detailed description of DTD modelling
including the task list is due to them.

Exercises

E-4-1 We claimed that one-to-one and one-to-many relationships in ER diagrams could
be represented in DTDs, e.g., by defining an element to have a content model that
contains certain subelements or a content model that is a repeatable group. How
would you represent a many-to-many relationship in a DTD? Take as an example3Notation declarations are not described in this course
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the relationship between courses and students. A student may attendmany courses
and you may have many students attending a certain course. Hint: Read about ID
and IDREF attributes in the standard.
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5 XML processing

How do we use XML documents? How do we read them? And how do we write them?

5.1 XML processors

When reading XML, an application should be able to understand the markup and the
DTD. It should possibly also be able to validate the document and process specific parts
of it, such as entities and attributes. Fortunately, there exist software libraries that are
able to understand XML. An XML aware processing module reads an XML document
and makes the content available to an application. It will detect problems such as errors
and file formats that the application cannot process. It may replace entity references with
corresponding entities and process attribute values. When validating the document, the
processor must also be able to read the DTD and interpret its rules.

A validating parser is an example of such a processor. A validating parser reads an XML
document and checks the instance against the DTD. If an error occurs in the markup (an
element is missing, the document is not well-formed, or the document hierarchy is not
correct, etc.), an error message should be reported.

Writing XML is easier, the output should only be enhanced with appropriate tags. But
some decision must be taken on how to handle white space.

5.2 Event-driven and tree-manipulation processing

There are twomain approaches to reading and processing XML documents, event-driven
processing and tree-manipulation.

Event-driven processing is a simple way of processing an XML document by reading it
as a stream of data. Every time an element is encountered in the stream, some sort of
action is taken by the processor. The event-driven processor may be implemented easily
in (procedural) programming language, such Java or C. For each element the processor
would contain a procedure for processing the element. There could be separate instruc-
tions on what to do when encountering an element start tag, element content, or element
end tag. As an example we could have the following instructions for transforming some
XML into LATEX (the procedure is given in pseudo language).

proc list()
if tag = "<list>" then

print "\begin{itemize}\n"
read next tag
while tag = not "</list>" do

if tag ="<list_item>" then
list_item()

read next tag
if tag = "</list>" then

print "\end{itemize}"
end proc

30



proc list_item()
if tag = "<list_item>" then

print "\item"
read next tag
while tag = not "<\item>"

print content
read next

if tag = "</item>" then
print "\n"

end proc

There would be no way to refer to data that occurs later in the stream (because it has not
yet been read). If such reference was necessary, the event-driven processor would need
to perform several passes over the data.

More advanced processing is provided through tree manipulation. Tree-manipulation
gives random access to the entire document which is kept by the software in memory.
Any part of the document can be accessed, interrogated and manipulated no matter what
its position is in the hierarchy. Tree-manipulation is especially suitable for editors and
browsers.

There are prepackaged software libraries that perform event-driven and/or tree-mani-
pulation processing. An application communicates with these packages through an API
(Application Programmers Interface). A standard has been proposed for event-driven
processing, called SAX (Simple API to XML). Another standard, called DOM (Document
Object Model), has been proposed for tree-manipulation processing.

Event-driven processing does not require much of the document to be held in memory,
as document parts are read and immediately passed to the application. It is therefore also
faster. But, for example, to build a table of contents, it is necessary to extract all section
titles. An event-driven processor would need two passes over the data, while, if the
document is kept in memory, titles could be found more easily by one structural query.
Tree-manipulation is also more suitable, if the document parts have to be reordered. But
a note of warning: some parser that use SAX might as well build the whole document
tree in memory before processing it, and there will hence be no memory usage advantage
compared with the tree-manipulation process.

5.3 Transformation tools

If we want to change an XML document structure, there are simpler ways to do it than
to use an application that reads and modifies the document, and writes out the new
structure. If the transformations are not too difficult, there are several tools available that
can change andmodify elements and element tags. Some can even performmore difficult
transformations such as changing the order of elements. The XML Stylesheet Language
Transformation (XSLT) can also be used to transform one XML document into another
(although designed for formatting and presenting XML documents).
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5.4 The white space problem

White space is used to describe characters that have no visual appearance but do affect
the formatting of the document. Such characters are the space and tab characters as well
as the carriage return and line feed characters. White spacemay become a problemwhen
it is not clear if it has been introduced because it is part of the document and should be
included in the output (to separate text), or if it has been introduced only for easy reading
etc. in the XML document. XML processors must know a way to process this ambiguous
white space.

An XML processor uses only the line feed character for terminating lines (as does UNIX).
If the processor finds a carriage return character, it is converted into a line feed characters.
If both characters are found in sequence, they are replaced by a line feed character. This
is called line end normalisation.

Within markup, multiple white space is equivalent to a single white space character.
White space can be used to separate attributes and values, etc. (But, for example, mul-
tiple white space in attribute values is not collapsed into a single white space character!).
So the following markup is equivalent.

<country language="Finnish Swedish" capital="Helsinki" population="5.2">

and

<country
language = "Finnish Swedish"
capital = "Helsinki"
population = "5.2"
>

If an element may have only element content (so specified in a DTD), a validating parser
must inform the application if the the element contains white space, in this case called
ignorable white space. The application, for example, a publishing system may then
choose to ignore this white space. However, if the element may have mixed content or
data content, white space cannot be ignored.

A non-validating parser will not know which element have element content. If the
standalone parameter in the XML declaration of a document is given the value no ,
such a parser will be warned that it will probably misinterpret some of the white space
in the document.

If the attribute xml:space is set to preserve , white space will be deemed significant
and included in the output (it is said to be preserved). If multiple white space is normal-
ised into one single white space character, it is said to be collapsed. This attribute can be
set (as FIXED) in the DTD for a certain element that will always preserve (or collapse) its
white space.

<!ELEMENT pre (#PCDATA)>
<!ATTLIST pre xml:space #FIXED "preserve">

There are no issues in the XML standard relating to the white space ambiguities. Different
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applications may process white space differently. In a publishing system (web browser),
the following rules are recommended by Bradley [Bra00].� block and in-line elements must be identified� white space surrounding a block element should be removed� a line containing nothing but declarations and/or comments should be entirely re-

moved� leading and trailing white space inside a block element should be removed (except
when content is explicitly preserved)� a line-end code within a block element should be converted into space� a sequence of white space characters should be reduced to a single space character.

A block element contains text that is separated from preceding and following text, such
as a paragraph. An in-line element does not generate a break in the text; an example is
an emphasis element. (Compare with HTML.)

Literature and references

Again, this chapter has been mainly based on Bradley [Bra00].

Exercises

The two first exercises are due to Ahonen [AM00]

E-5-1 Try out the Apache Xerces parser (http://xml.apache.org/ ). You will find it
in the directory

/home/group/xmltools/parsers/xerces/

Copy the file setup xerces in that directory to your own test directory and run
the command

source setup xerces

in the directory. The command will update your CLASSPATH variable with the
correct path to the parser.

Copy the files SAXParserDemo.java , personal.xml and personal.dtd from
the directory

/home/group/xmltools/parsers/xerces/exercise/

to your own test directory. Compile the parser with the command

javac SAXParserDemo.java .

Study the output of the parser with the command

java SAXParserDemo personal.xml .

Make the file personal.xml invalid by removing some obligatory element and
try parsing again. What happens?
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E-5-2 Validate the file personal.xml .

Edit the file SAXParserDemo.java and remove the comment marker (// ) in front
of the line

//parser.setFeature("http://xml.org/sax/features/.. .

Run the parser with the file personal.xml again. What happens?

E-5-3 Parse/validate your XML document in exercise E-3-4 (or E-3-1, or E-3-2).

E-5-4 Parse a file that does not contain a DTD. What happens? What about validating?

E-5-5 How does Xerces process white space in a) elements with element contents, b) in
elements with mixed content, c) in elements with data content? Study the output of
the parser in the first exercise.
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6 SAX

SAX, the Simple API for XML, is a standard interface for event-based XML processing.
In this chapter we shall take a look at version 2.0, which was released in May 2000.

6.1 Introduction

Many XML parsers work in a stand-alone manner. They read an XML document, checks
for wellformedness, and possibly for validity if a DTD is given. This does not yet help an
application which wants to access the contents of the XML document. Many parsers can
also pass on the information they read through an application programmer’s interface.

Instead of each parser developer building their ownAPI, the XML community has agreed
on some standard APIs. The application is therefore not dependent on a certain parser,
but parsers can be replaced as long as they follow they standard.

One example of such an API is SAX, the Simple API to XML. It is an interface standard
for event-based XML processing, free for private and commercial use. It should be noted
that SAX is not a parser. Different developers and organisations have built XML parsers
that use the standard for passing on data to applications. Many of these parsers are free
and can be downloaded from the web.

A new version of SAX, version 2.0, was recently released. It is hereafter referred to as
SAX2.

6.2 Interfaces of SAX2

In order to process different kind of events that occur in event-based processing, SAX2
contains the following main interfaces (org.xml.sax ).

Attributes: Interface for a list of XML attributes.

ContentHandler: Receive notification of the logical content of a document.

DTDHandler: Receive notification of basic DTD-related events.

EntityResolver: Basic interface for resolving entities.

ErrorHandler: Basic interface for SAX error handlers.

Locator: Interface for associating a SAX event with a document location.

XMLFilter: Interface for an XML filter.

XMLReader: Interface for reading an XML document using callbacks.
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6.3 A Java implementation

We will take a closer look at a Java implementation of a parser that follows the SAX2
standard. There are several such parsers, but we will concentrate on the Apache Xerces
parser (available at http://xml.apache,org ).

This section will require some basic knowledge of Java. We will concentrate on interfaces
that support processing of XML components such as elements, attributes and entities,
and will spend less time on error handling and more advanced features.

The SAX2 application could contain the following instructions

public void performDemo(String uri) {
System.out.println("Parsing XML File: " + uri + "\n\n");

// Get instances of our handlers
ContentHandler contentHandler = new MyContentHandler();
ErrorHandler errorHandler = new MyErrorHandler();

try {
// Instantiate a parser
XMLReader parser = XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

// Register the content handler
parser.setContentHandler(contentHandler);

//parser.setFeature("http://xml.org/sax/features/va lidation",
true);

// Register the error handler
parser.setErrorHandler(errorHandler);

// Parse the document
parser.parse(uri);

} catch (IOException e) {
System.out.println("Error reading URI: " + e.getMessage( ));

} catch (SAXException e) {
System.out.println("Error in parsing: " + e.getMessage() );

}
}

The procedure is given a reference to the XML document file as input. The ContentHandler
will process the events encountered in the XML document, the ErrorHandler the er-
rors that occur when running the application. The XMLReader creates the parser and the
ContentHandler and ErrorHandler are registered for this instantiation of the parser.
The different handlers can also be replaced by one single DefaultHandler .

For a list of import declarations, see the example files in the Appendix.
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6.4 The XMLReader

The XMLReader is used for reading the XML document.

Among its methods, the most important is the parse method. The parser that is to be
used can be set when this interface is instantiated.

XMLReader parser =
XMLReaderFactory.createXMLReader("org.apache.xerces .parsers.SAXParser");

Here we use the Apache Xerces parser. The parser is called with the file name as input

parser.parse(uri);

It will read the file and return the events for the ContentHandler .

6.5 The ContentHandler

The ContentHandler is the main interface that most applications implement. The
parser reports basic events, such as the start and end of elements aswell as their character
contents to this handler, which then canmake the required modifications to the data. The
handler contains, among others, the following methods.

void characters(char ch[], int start, int length) : For processing of char-
acter data.

void endDocument() : For processing the end of a document.

void endElement(String uri, String name, String qName) : For processing
the end of an element.

void ignorableWhitespace(char[] ch, int start, int length ) : For pro-
cessing ignorable whitespace in element content.

void processingInstruction(String target, String data) : For processing
a processing instruction.

void skippedEntity(String name) : For processing a skipped entity. (When the
parser is non-validating.)

void startDocument() : For processing the beginning of a document.

void startElement(String uri, String name, String qName, A ttributes atts) :

For processing the beginning of an element.

The StartDocument and EndDocument methods contain actions to be taken on the
start and end of the document. For example, we can have

37



public void startDocument ()
{

InArticleHeadline = false;
System.out.println("\\documentclass{report}\n\\begi n{document}\n");

}

When the parsing begins, this method will print out two strings that start a LATEX docu-
ment including two newline characters. It will also set the variable InArticleHeadline
to false.

The EndDocument method could contain the following instructions.

public void endDocument ()
{

System.out.println("\n\\end{document}\n");
}

When the end is reach, the parser prints out the end instruction of a LATEX document
surrounded by newline characters.

The StartElement and EndElement methods contain actions to be taken on the start
and end of elements. An example is

public void startElement (String uri, String name,
\item[\command{String qName, Attributes atts)

{
if ( name.equals("HEADLINE") ) {

InArticleHeadline = true;
System.out.print("\\section{");

}
if ( name.equals("BODY") ) {

InArticleBody = true;
}

}

and

public void endElement (String uri, String name, String qNa me)
{

if ( name.equals("HEADLINE") ) {
InArticleHeadline = false;
System.out.println("}");

}
if ( name.equals("BODY") ) InArticleBody = false;

}

Some different actions are taken in these methods. At the start of HEADLINEelements,
the variable InArticleHeadline is set to true . The start of a LATEX section is also
printed. In consequence, at the end of HEADLINEelements, the variable is set to false
and the LATEX section is completed. (But in none of these methods is the actual section
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title printed.) The BODYelement results in no output, but a variable is set according to
whether the parser ”enters” or ”leaves” such an element.

The character method can look as follows.

public void characters (char ch[], int start, int length)
{

String chars = new String(ch, start, length);

if (InArticleHeadline == true)
System.out.print(chars);

if (InArticleBody == true) {
System.out.println("\\begin{quote}");
System.out.println(chars);
System.out.println("\\end{quote}");

}
}

The method will print out only the contents of the elements BODYandHEADLINE. The
BODYcontent will be surrounded by LATEX quote commands.

Let’s assume that our XML document instance and DTD look as follows

<!-- A Sample Newspaper Article DTD -->

<!ENTITY NEWSPAPER "Vervet Logic Times">
<!ENTITY PUBLISHER "Vervet Logic Press">
<!ENTITY COPYRIGHT "Copyright 1998 Vervet Logic Press">
<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE (HEADLINE, BYLINE, LEAD, BODY, NOTES)>
<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED

EDITOR CDATA #IMPLIED
DATE CDATA #IMPLIED
EDITION CDATA #IMPLIED>

<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BYLINE (#PCDATA)>
<!ELEMENT LEAD (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE NEWSPAPER SYSTEM "newspaper.dtd">
<NEWSPAPER>
<!--This is a sample file from Vervet Logic, makers of XML Pro -->

<ARTICLE EDITOR="Ernie Pyle" DATE="11/15/98" EDITION="E vening"
AUTHOR="Jane Doe">
<HEADLINE>Extensible Markup Language Proposed</HEADLIN E>
<BYLINE>Jane Doe, Staff Writer</BYLINE>
<LEAD>The newly proposed XML Specification has been making a

splash in the Internet development community.</LEAD>
<BODY>The newly proposed XML draft stands to revolutionize

the exchange of data and markup on the www, by allowing
organizations and companies to develop their own markup
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languages quickly and easily.</BODY>
<NOTES>No Notes</NOTES>

</ARTICLE>
<ARTICLE AUTHOR="John Doe" EDITOR="Ernie Pyle" DATE="02/ 15/98"

EDITION="Morning">
<HEADLINE>XML 1.0 Recommendation Released</HEADLINE>
<BYLINE>John E. Doe, Reporter</BYLINE>
<LEAD>The W3C today released the final recommendation for

XML to excited developers world wide.</LEAD>
<BODY>XML Developers, such as Vervet Logic are already

using the released recommendation to ensure compliance
of their products with XML 1.0. </BODY>

<NOTES>See www.w3c.org for more information</NOTES>
</ARTICLE>

</NEWSPAPER>

Running the parser will produce the output

\documentclass{report}
\begin{document}

\section{Extensible Markup Language Proposed}
\begin{quote}
The newly proposed XML draft stands to revolutionize
the exchange of data and markup on the www, by allowing
organizations and companies to develop their own markup
languages quickly and easily.
\end{quote}
\section{XML 1.0 Recommendation Released}
\begin{quote}
XML Developers, such as Vervet Logic are already
using the released recommendation to ensure compliance
of their products with XML 1.0.
\end{quote}
\end{document}

6.6 The Attributes Interface

The Attributes interface allows access to the attributes of an element. Some of the
methods in the interface are

int getLength() : Return the number of attributes in the list.

String getLocalName(int index) : Look up an attribute’s local name by index.

String getType(int index) : Look up an attribute’s type by index.

String getValue(int index) : Look up an attribute’s value by index.

The parser returns a list of attributes for all elements. Attributes that were declared
#IMPLIED in the DTD and not specified in the instance are not included in the list

40



The following instructions in the StartElement method

public void startElement (String uri, String name,
String qName, Attributes atts)

{
if ( name.equals("ARTICLE") )

for (int i = 0; i < atts.getLength(); i++)
{

System.out.print(atts.getLocalName(i) + " " +
atts.getType(i) + " " +
atts.getValue(i) + "\n");

}
}

will, when applied on the example above, produce the following list of attribute names,
types and values.

EDITOR CDATA Ernie Pyle
DATE CDATA 11/15/98
EDITION CDATA Evening
AUTHOR CDATA Jane Doe

AUTHOR CDATA John Doe
EDITOR CDATA Ernie Pyle
DATE CDATA 02/15/98
EDITION CDATA Morning

Literature and references

See the Appendix for a simple SAX2 application file in Java. See also

http://www.cs.helsinki.fi/group/xmltools/

for more documentation. More information about SAX2 can be found on the web site

http://www.megginson.com/SAX/index.html

The new version 2.0 was released in May 2000. Bradley [Bra00] refers to the old ver-
sion 1.0 released in May 1998. Newer versions of Bradley’s book may have updated the
chapter on SAX to concern version 2.0.

The Xerces parser is a product of theApache project. The project (http://xml.apache.org )
has among its goals to provide commercial-quality standards-based XML solutions that
are developed in an open and cooperative fashion. There are several other software avail-
able for free also at the Apache web site.

Exercises

E-6-1 Build a transformation using the Xerces parser that reads XML files conforming
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to the personal.dtd (e.g., personal.xml , see exercise E-5-2. The parser would
change the file into a LATEX file: the file should start with the following definitions

\documentclass{article}
\begin{document}
\section*{Workers at ABC}
\begin{itemize}

Every person element, e.g.,

<person id="one.worker">
<name><family>Worker</family> <given>One</given></na me>
<email>one@foo.com</email>
<link manager="Big.Boss"/>

</person>

should be replaced in the output with

\item Worker, One; e-mail: one@foo.com

and the LATEX file should end with

\end{itemize}
\end{document}

(You run LATEX on this file with the commands latex file.tex and dvips file.dvi
will make the file into Postscript.)

Hint: Copy the file SAXParserDemo.java from the directory

/home/group/xmltools/parsers/xerces/exercise/

and make changes in the ContentHandler that will produce the required output
from the input file personal.xml .

E-6-2 Modify the parser to transform the file personal.xml into HTML. You can choose
the appropriate outlook yourself.

E-6-3 Build a transformation using the Xerces parser which reads XML files conforming
to the catalog.dtd (e.g., catalog.xml ) in the directory

/home/group/xmltools/parsers/xerces/exercise/

The transformation should write out the product names according to the following
format:

Product name Weight Power Street Price Shipping
Speed Drill Pro 8lbs 120v $129.95 $15.00
Speed Drill 7.5lbs 120v $79.95 $10.00
...

If you feel energetic, you could make the program compute the total price of the
products in the list, the total shipping costs and the total costs (products and ship-
ping).

E-6-4 Study the SAX2 documentation on http://www.cs.helsinki.fi/group/xmltools/

Find out how the interface reacts to� white space� entities� processing instructions
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7 DOM

Many parsers are able to build a tree of the XML document they parse. The XML docu-
ment as a tree gives an application the possibility to access any part of the document at
any moment during the processing.

TheDocument Objectmodel (DOM) has been developed by theW3C to provide a stand-
ard interface for how applications should access XML andHTML (!) documents. The core
standard applies to both XML and HTML and some extensions to the standard describe
more specific HTML processing.

The arguments for the DOM standard are mainly the same as for the SAX standard:
by providing a standard interface to the applications, parser developers do not have to
define their own interfaces between their parsers and possible applications.

Also as we saw in an earlier chapter, tree processing gives more power to the processing
but can also result in less efficient processing when it comes to speed and memory usage.
The DOM standard is more complex than the SAX standard and all DOM parsers may
not provide all the features described in the standard. Some parsers use a SAX imple-
mentation to provide some of the objects needed.

In this chapter we shall take a look at the core standard and its most important features.
We will not go into details needed for processing HTML specific details.

7.1 A Java implementation

As an example parser we shall again use the Java implementation of Apache’s Xerces.
(Note: there is both a SAX implementation and a DOM implementation of the same
parser!)

To use the parser, we need the following import statements

import org.apache.xerces.parsers.DOMParser;
import org.w3c.dom.*;
import org.xml.sax.*;

Suppose that we have a reference to the XML document in the variable uri . To invoke
the parser, we write:

DOMParser parser = new DOMParser ();

try {
parser.parse (uri);
Document doc = parser.getDocument ();

}

The parser will read the document and represent it as a hierarchy of document objects or
nodes. Nodes describe any kind of XML document object such as elements, text, com-
ments, processing instructions, CDATA sections, entity references, attributes, etc. Some
of the nodes may have children nodes, some are leaves that have no children.
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The root to the tree is returned by the method getDocument() . Any part of the tree
can now be accessed, e.g., through this variable. We can search for nodes, add or remove
nodes, change the order of nodes, traverse the tree in any order (e.g., preorder) and print
out node names or contents, etc.

All modifications that we make to a node are automatically reflected in the tree. If we
want to produce output of some specific representation (say, e.g., XML), it is the task of
the application to see that the tree is modified in a way that is consistent with what we
expect.

The standard does not say anything about how to traverse the hierarchy. Many parsers,
though, provide a tree walker class with methods for finding the next node in the tree
in some order (e.g., finding the next node or the next element in preorder, etc.). The
application may also define its own traversal methods. Tree traversal can be easily be
done recursively as in

public void processNode (Node node) {

// process node here if (preorder) processing required

NodeList nodes = node.getChildNodes();
if (nodes != null) {

for (int i=0; i < nodes.getLength(); i++) {
processNode (nodes.item(i), "");

}
// process node here if (postorder) processing is required

}

The getChildNodes() method returns a list of possible child nodes of the current node.
If the processNode method is called with the root of the document as parameter, it will
traverse the entire document hierarchy in specified order.

7.2 Nodes

We specified that all kind of document objects are called nodes. We have the following
possible types and their possible child types defined in theNode interface.
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Node type Possible child type

Document Element (maximum of one), ProcessingInstruction, Com-
ment, DocumentType (maximum of one)

DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATA-
Section, EntityReference

DocumentType no children
EntityReference Element, ProcessingInstruction, Comment, Text, CDATA-

Section, EntityReference
Element Element, Text, Comment, ProcessingInstruction, CDATA-

Section, EntityReference
Attr Text, EntityReference
ProcessingInstruction no children
Comment no children
Text no children
CDATASection no children
Entity Element, ProcessingInstruction, Comment, Text, CDATA-

Section, EntityReference
Notation no children

Nodes can also be referenced in an ordered NodeList or and unordered list of nodes
called NamedNodeMap.

The Node interface methods can be divided into three categories, methods processing
node characteristics, navigation in the tree, and manipulation of nodes. In the following,
we take a closer look at these categories.

7.2.1 Node characteristics

Node characteristics include the node’s name, type and value, as well as information
about its child nodes and attributes. We have the following methods for determining
and modifying node characteristics.

String getNodeName()
short getNodeType()
String getNodeValue()
void setNodeValue(String nodeValue)

boolean hasChildNodes()
boolean hasAttributes()

The methods are used for finding the node name, its type and its value, for setting its
value, and for finding out if the node has child nodes or attributes.

The getNodeType() method returns node types (represented by integers) such as

ELEMENT_NODE = 1
ATTRIBUTE_NODE = 2
TEXT_NODE = 3
CDATA_SECTION_NODE = 4
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ENTITY_REFERENCE_NODE = 5
ENTITY_NODE = 6
PROCESSING_INSTRUCTION_NODE = 7
COMMENT_NODE = 8
DOCUMENT_NODE = 9
DOCUMENT_TYPE_NODE = 10
DOCUMENT_FRAGMENT_NODE = 11
NOTATION_NODE = 12

For example, a tree traversal method can test for the node type before taking any action
as in:

switch (node.getNodeType()) {
case Node.DOCUMENT_NODE:

NodeList nodes = node.getChildNodes();
if (nodes != null) {

for (int i=0; i < nodes.getLength(); i++) {
processNode (nodes.item(i));

}
}
break;

case Node.ELEMENT_NODE:
String name = node.getNodeName();

// process element name
NamedNodeMap attributes = node.getAttributes();
for (int i = 0; i < attributes.getLength(); i++) {

Node current = attributes.item(i);
// process attributes

}
NodeList children = node.getChildNodes ();
if (children != null) {

for (int i=0; i < children.getLength(); i++) {
processNode (children.item(i), indent + " ");

}
}
break;

case Node.TEXT_NODE:
case Node.CDATA_SECTION_NODE:

// process text and cdata nodes
break;

case Node.PROCESSING_INSTRUCTION_NODE:
// process processing instruction

...
}

7.2.2 Tree navigation

The application can navigate freely in the document hierarchy. From a specific node,
we can refer to the node’s child nodes, sister nodes, parent node and attributes with the
following methods
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Node getParentNode()
NodeList getChildNodes()
Node getFirstChild()
Node getLastChild()
Node getPreviousSibling();
Node getNextSibling()
NamedNodeMap getAttributes()
Document getOwnerDocument()

The getOwnerDocument() method finds the root of the document that contains the
node.

7.2.3 Node manipulation

The structure of the tree may also be modified. The children of a node may be removed,
replaced or copied, and new children may be added. we have the following methods for
performing these modifications.

Node insertBefore(Node newChild, Node refChild)
Node replaceChild(Node newChild, Node oldChild)
Node removeChild(Node oldChild)
Node appendChild(Node newChild)
Node cloneNode(boolean deep)

7.2.4 Node lists

Some of the methods above return ordered lists of nodes. A NodeList has the methods

Node item(int index)
int getLength()

for accessing the items in the list and returning the length of the list.

7.2.5 Documents

The entire XML document is represented as a document node. We have methods for
accessing the root of the document, its document type, and any element in the document
based on the element’s name.

DocumentType getDoctype()
Element getDocumentElement()
NodeList getElementsByTagName(String tagname)

The Document interface also includes methods for creating new nodes such as

Element createElement(String tagName)
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Text createTextNode(String data)
Comment createComment(String data)
Attr createAttribute(String name)
...

Once a node has been created it can be appended to the tree (see Node manipulation
methods).

7.2.6 Elements, attributes and text

Elements, attributes and text all have separate interfaces for their processing (extending
the Node interface). For general element processing we have

String getTagName()
NodeList getElementsByTagName(String name)

The getElementsByTagName method will return all elements with a certain name
given as parameter and located in the subtree of the source element.

Attributes of an element can be processed with

String getAttribute(String name)
void setAttribute(String name, String value)
void removeAttribute(String name)
Attr getAttributeNode(String name)
Attr setAttributeNode(Attr newAttr)
Attr removeAttributeNode(Attr oldAttr)

String getName()
boolean getSpecified()
String getValue()
void setValue(String value)
Element getOwnerElement()

The getSpecified methodwill return true if the attribute was specified in the element
start tag and false if the attribute value was provided as a default value by the DTD.

There are also methods for normal string processing, such as

String getData()
void setData(String data)
int getLength()

String substringData(int offset, int count)
void appendData(String arg)
void insertData(int offset, String arg)
void deleteData(int offset, int count)
void replaceData(int offset, int count, String arg)

A text node may be split by the method
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Text splitText(int offset)

When a document is first made available via DOM, there is only one text node for each
block of text. The user may choose to add adjacent text nodes within a given element.
Such text nodes will be merged into a single node by the normalize() method in the
Node interface.

Literature and references

For an example of using the DOM interface, see the appendix. See also

http://www.cs.helsinki.fi/group/xmltools/

for using DOM. More information about DOM can be found on the web site

http://www.w3.org/TR/DOM-Level-2-Core/

The Document ObjectModel (DOM) Level 2 Core Specification version 1.0 is fromNovem-
ber 2000. (There is a Level 3 Core Draft from January 2001.) Bradley [Bra00] refers to an
older version 1.0.

The Xerces parser is a product of the Apache project (http://xml.apache.org ).

Exercises

E-7-1 How do the DOM and SAX standards differ? When would it be useful to use one
instead of the other?

E-7-2 Try out the Apache Xerces parser again (http://xml.apache.org/ ), and this
time the DOM interface. You will find Xerces in the directory

/home/group/xmltools/parsers/xerces/

Copy the file setup xerces in that directory to your own test directory and run
the command

source setup xerces

in the directory. The command will update your CLASSPATH variable with the
correct path to the parser.

Copy the files DOMParserDemo.java , personal.xml and personal.dtd from
the directory

/home/group/xmltools/parsers/xerces/exercise/

to your own test directory. Compile the parser with the command

javac DOMParserDemo.java

Study the output of the parser with the command

java DOMParserDemo personal.xml

Make some small changes to the Java file, recompile, and study the output.
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Note: The documentation for Xerces says that by setting a validation feature to true
(just as in SAX), the parser would also validate the input. This seems not to be the
case, validation has not been implemented in Xerces (or the implementation does
not work?).

E-7-3 Build a transformation using the Xerces parser that reads XML files conforming
to the newspaper.dtd (e.g., newspaper.xml ). The parser collects all the article
headlines and changes them into a HTML

The file starts with the following definitions

<HTML>
<BODY>
<UL>

Every HEADLINEelement, e.g.,

<HEADLINE>Extensible Markup Language Proposed</HEADLIN E>

is listed in the HTML file as

<LI>Extensible Markup Language Proposed

the list is concluded with the HTML markup

</UL>

Hint: Copy the file DOMParserDemo.java from the directory

/home/group/xmltools/parsers/xerces/exercise/

andmake changes in the printNode method that will produce the required output
from the input file newspaper.xml .

E-7-4 Continue the transformation above by having it constructing both a list of article
headlines and the articles themselves. The headlines are transformed as described
above and printed into an HTML list.

The newspaper articles follow the list, e.g., an article

<ARTICLE EDITOR="Ernie Pyle" DATE="11/15/98" EDITION="E vening"
AUTHOR="Jane Doe">
<HEADLINE>Extensible Markup Language Proposed</HEADLIN E>
<BYLINE>Jane Doe, Staff Writer</BYLINE>
<LEAD>The newly proposed XML Specification has been making

a splash in the Internet development community.</LEAD>
<BODY>The newly proposed XML draft stands to revolutionize

the exchange of data and markup on the www, by allowing
organizations and companies to develop their own markup
languages quickly and easily.</BODY>

<NOTES>No Notes</NOTES>
</ARTICLE>

is represented in HTML as
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<H2>Extensible Markup Language Proposed</H2>
<P>The newly proposed XML Specification has been making
a splash in the Internet development community.</P>
<P>The newly proposed XML draft stands to revolutionize
the exchange of data and markup on the www, by allowing
organizations and companies to develop their own markup
languages quickly and easily.</P>
<P>Jane Doe, Staff Writer</P>

Hint: You need to include a command for collecting the headlines into the list before
printing out the actual articles.

E-7-5 Addworking HTML links in the transformation above. When the user clicks on the
headline of an article in the list and the browser ”jumps” to the article. (This exercise
will require some extra reading about information not included in the lectures of the
course.)

E-7-6 Build an application in DOM that reads in an XML file and prints out the same
XML file in the same format.

E-7-7 Study the DOMdocumentation on http://www.cs.helsinki.fi/group/xmltools/

Find out how to process entities and processing instructions.
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8 Document formatting

XML documents are not intended to be presented as such for reading. What we want is
to have the content nicely presented excluding XML tags.

We have seen that it is possible to replace the tags with the SAX and DOM parsers in
the previous chapters. This, however, requires that we build a suitable program that
processes the tags for every DTD.

A more convenient way is to use a style sheet for defining how to present instances that
conform to a certain DTD.

XSL (XML Stylesheet language) is a language for expressing such style sheets. It consists
of two parts� XSL Transformations (XSLT), a language for transforming XML documents, and� An XML vocabulary for specifying formatting semantics (Formatting Objects).

An XSL style sheet describes how an XML document instance is transformed into an
instance using the formatting vocabulary. There are already applications that are able to
interpret XML documents using this vocabulary. We shall take a look at one, Apache’s
FOP, producing PDF files from such a representation.

8.1 XSL

In the following we look at examples of XSL but we will not make a thorough study of
the subject. An example XSL specification can be found in the appendix.

An XSLT style sheet starts as follows

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XS L/Transform"

version="1.0">

For each XML element, we can include a matching rule with some action. The following
rule

<template match="para">
<p><apply_templates/></p>
</template>

matches a para element. It will replace para with p elements and recursively continue
the processing of the document with the subelements of the para element (done by the
apply templates ”command”).

We may include a prefix text (or a suffix text) in the element as in
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<xsl:template match="Order">
Order is: <xsl:value-of select="@Name"/>

<xsl:apply-templates select="Family"/><xsl:text>
</xsl:text>
</xsl:template>

This template inserts a constant text Order is: before continuing with the processing
of the Order element. In this case, the value of the attribute Nameis selected and out-
put, and then only Family elements within the Order element are selected for further
processing.

The template

<xsl:template match="Family">
Family is: <xsl:value-of select="@Name"/>
<xsl:apply-templates select="Species | SubFamily | text( )"/>

</xsl:template>

makes a similar selection of elements to be further processed, but includes an optional
group to choose from. The option text() refers to text data in the element Family .

An example of a more complex template

<xsl:template match="s2">
<table width="100%" border="0" cellspacing="0" cellpadd ing="4">

<tr>
<td bgcolor="#006699">

<font color="#ffffff" size="+1">
<b><xsl:value-of select="@title"/></b>

</font>
</td>

</tr>
</table>
<xsl:apply-templates/>
<br/>

</xsl:template>

The template matches s2 elements. It will replace such elements with HTML table
elements containing tr , td and other lements. The s2 element has an attribute, title ,
whose value is selected and included in the new table element (in the b element in the
font element in the td element in the tr element in the table element).

It is possible to specify in the XSL style sheet how to� process white space� change template ordering� use sorting� include automatic numbering
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� use variables� use conditions and repetitions� etc.

As a matter of fact the power of XSL comes close to a normal programming language.
Note, however, that instructions are always specified as XML elements; a style sheet will
always conform to the XSL DTD.

The style sheet is ended with

</xsl:stylesheet>

When applying the above (complete) specification to an XSL Transformation, it will make
the specified modifications/transformations and output the result.

8.2 Formatting Objects

The second part of the XSL standard is provided by the vocabulary for specifying format-
ting objects. Formatting objects are part of the XSL standard. Examples of format-
ting objects are blocks, and table-cells, and these have formatting properties such as
border-color and font-size. In XSL, the approach to describe formatting objects have been
through a formatting objects DTD (FO DTD). Each formatting object is given a concrete
syntactical form. Formatting properties are described in attributes to these elements. The
contents of a formatting objects is the text that is to be presented, or rendered, in the
output according to the formatting object type and properties.

An XML document containing formatting objects is then exactly that: an XML document,
conforming to the rules of the FO DTD. Of course, to include formatting details in XML
goes against the principles of the standard. Normally, however, we would automatically
generate the XML document containing FOs from the original XML document, e.g., by
using XSLT (see previous and next sections).

Formatting objects create rectangular areas to hold the information presented. Most ob-
jects correspond to one rectangular area, but sometimes objects must be split into several
areas, as in a long paragraph which is broken into several pages. The rectangular areas
are placed adjacent to each other and create the flow of the material on the page. Areas
may also contain other areas thereby forming a formatting object tree.

The root node of the formatting object tree must be an root 4 element. The children of
root are a single layout-master-set , an optional declarations , and a sequence of
one or more page-sequence s. The layout-master-set defines the page size and se-
quencing of the pages, while declarations contains objects that are used in the format-
ting process. The page-sequence s provide the content of the pages and are called
flows. The descriptions of pages in the layout-master-set should naturally precede
the actual pages contained in the page-sequence s as in the following specification.4Note that all names of formatting object elements are preceded by fo: . We leave out this prefix to make
the text more readable, but use the prefix in the examples.
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<fo:root>
<fo:layout-master-set>...</fo:layout-master-set>
<fo:page-sequence>...</fo:page-sequence>
<fo:page-sequence>...</fo:page-sequence>

</fo:root>

Page templates are defined in a page-master within the layout-master-set ele-
ment. The page-master contains at least one simple-page-master element which
defines a single page such as an initial page, a left-side page of a right-side page. Each
page-master also has a name. We have then

<fo:root>
<fo:layout-master-set>

<fo:page-master>
<fo:simple-page-master

page-master-name="FirstMaster">
...
</fo:simple-page-master>

</fo:page-master>
</fo:layout-master-set>
<!-- page sequences -->
<fo:page-sequence>...</fo:page-sequence>
<fo:page-sequence>...</fo:page-sequence>

</fo:root>

Each page-master can have a writing direction such as left-to-right, top-to-bottom for
languages such as English and Finnish (specified as lr-tb ) but other languages may
use other writing directions. A page-master also can also have a height and width
attributes, margin attributes, and a reference orientation attribute if we want to change
the default writing direction. The reference orientation attribute is specified in degrees
from 0 to 360 degrees. A possible page-master is then

<fo:simple-page-master
page-master-name="FirstMaster"
margin = "1cm"
size ="25cm 15cm"
writing-mode = "lr-tb"
reference-orientation = "0">

</fo:simple-page-master>

We can also use margin-right , margin-left , margin-bottom and margin-top
for separately specifying themargins. Active regions on the page are definedwith region-...
elements. The only required such element is region-body which specifies the text body,
but we can also specify the header, footer, left margin and right margin of the page as in

<fo:simple-page-master ...>
<region-body margin-top="3cm" .../> <!-- main flow -->
<region-before .../> <!-- header -->
<region-after .../> <!-- footer-->
<region-start .../> <!-- left margin -->
<region-end .../> <!-- right margin -->

</fo:simple-page-master>
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All these regions can be given their own reference orientation and writing mode, as
well as borders and padding. For example, text in a margin could be vertical. The
region-body element also has attributes that define the number of columns, the width
between columns, the background colour, and the width of any border around the area.

A page-sequence must specify the name of its page-master . A page-sequence
also contains a flow element that contains the content of the pages. The flow element
specifies where in the page the text should go, e.g., in the body or in the margin. Below,
we have specified the text to appear in the page body.

</fo:root>
<fo:page-sequence master-name="FirstMaster">

<fo:flow flow-name="xsl-region-body">

<!-- text content -->
<fo:block>Roses are red,</fo:block>
<fo:block>Violets are blue</fo:block>
<fo:block>Violets are blue;</fo:block>
<fo:block>Sugar is sweet,</fo:block>
<fo:block>And I love you.</fo:block>

</fo:flow>
</fo:page-sequence>

The actual text is here specified in blockswhich are used to enclose simple blocks of text,
such as paragraphs or titles, and in this cases verses in a poem. At the beginning of the
XML document, we should have an XML declaration and then specify what namespace
the elements use (i.e. fo: in the element names refers to the url given below and makes
the names unique.

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format ">

If we put these parts together, we have a simple XML document containing the above
specifications and a short poem.

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format ">

<fo:layout-master-set>
<fo:simple-page-master

margin-right="2.5cm"
margin-left="2.5cm"
margin-bottom="2cm"
margin-top="1cm"
page-width="29.7cm"
page-height="21cm"
master-name="FirstMaster">
<fo:region-body margin-top="3cm"/>

</fo:simple-page-master>
</fo:layout-master-set>
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<fo:page-sequence master-name="FirstMaster">
<fo:flow flow-name="xsl-region-body">

<fo:block>Roses are red,</fo:block>
<fo:block>Violets are blue</fo:block>
<fo:block>Sugar is sweet,</fo:block>
<fo:block>And I love you.</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

The Apache project provides a Formatting Objects Processor (FOP) for translating such
files into PDF format (We will learn how to use FOP in the exercises of this chapter.) In
this case the result would be (this does not look exactly as the PDF result when printed,
as LATEX is not able to reproduce PDF.)

Roses are red,
Violets are blue
Sugar is sweet,
And I love you.

Unfortunately, not all formatting objects or properties in the standard have been imple-
mented in FOP. For example, the writing-mode attribute has not been implemented, so
we cannot see what happens if we decide to specify, e.g, the writing mode to right-to-left,
bottom-up.

Let us instead take a look at some more formatting objects and properties. The block
element specifies a block of text. It has several attributes. For example, we can specify
padding, alignment, text colour, background colour, space after the block, line height,
font family and font size as in the following block.

<fo:block
padding-top="3pt"
text-align="center"
color="white"
background-color="blue"
space-after.optimum="15pt"
line-height="24pt"
font-family="sans-serif"
font-size="18pt">Roses are Red</fo:block>

When included in the above poem as a title, we would produce the following result (with
FOP into PDF).
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Roses are red

Roses are red,
Violets are blue
Sugar is sweet,
And I love you.

The title would be printed in white on a blue background.

If the block contains more text than fits on a line, the textwill be divided into several lines.
We can specify that the text should be justified (no ragged margins!). The specification

<fo:block text-align="justify">Formatting objects are p art of
the XSL standard. Examples of formatting objects are blocks , and
table-cells, and formatting properties such as border-col or and
font-size. In XSL, to approach to describe formatting objec ts
have been ...
</fo:block>

would give a nice block of text as in

Formatting objects are part of the XSL standard. Ex-
amples of formatting objects are blocks, and table-cells,
and formatting properties such as border-color and font-
size. In XSL, to approach to describe formatting objects
have been through a formatting objects DTD (FO DTD).
Each formatting object is given a concrete syntactical form.
Formatting properties are described in attributes to these
elements. The text of a formatting objects is the text that is
to be presented, or rendered, in the output according to the
formatting object type and properties.

where the width of the text is set in the page-master .

There are several inline objects. An inline objects is not separated in a block from the
surrounding text. Typical inline objects would be emphasised words, etc. Single charac-
ters can have their properties set (e.g., font, size, color, etc) in a character element. The
specification

H<fo:character
character="2"
color="green"
vertical-align="sub"/>O

would make a green subindex ”2” between an H and an O letter. (Unfortunately FOP,
again, does not implement the subindex property.)

Other inline objects can be specified in inline elements such as font weight and style
(bold, italics, normal, etc.), and font size. Page numbers can be referred to in the text. A
specification as below
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<fo:block text-align="justify">
Here is <fo:inline font-weight="bold">some
text in bold font</fo:inline>.
</fo:block>

<fo:block text-align="justify">
<fo:inline font-style="italic">The current
page number is <fo:page-number font-size="200%"/></fo:i nline>.
</fo:block>

will produce a page where we have the text

Here is some text in bold font.

The current page number is1

Lists and tables have their own formatting objects. The following specification

<fo:list-block>
<fo:list-item>

<fo:list-item-label>
<fo:block>a.
</fo:block>

</fo:list-item-label>
<fo:list-item-body>

<fo:block>List item 1.
</fo:block>

</fo:list-item-body>
</fo:list-item>

<fo:list-item>
<fo:list-item-label>

<fo:block>b.
</fo:block>

</fo:list-item-label>
<fo:list-item-body>

<fo:block>List item 2.
</fo:block>

</fo:list-item-body>
</fo:list-item>

</fo:list-block>

will produce a simple list like

a. List item 1.
b. List item 2.

A table specification
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<fo:table width="12cm" >
<fo:table-column column-number="1" column-width="72pt ">
</fo:table-column>
<fo:table-column column-number="2" column-width="72pt ">
</fo:table-column>
<fo:table-column column-number="3" column-width="72pt ">
</fo:table-column>

<fo:table-body>
<fo:table-row>

<fo:table-cell column-number="1">
<fo:block>Cell 1
</fo:block>

</fo:table-cell>
<fo:table-cell column-number="2">

<fo:block>Cell 2
</fo:block>

</fo:table-cell>
<fo:table-cell column-number="3">

<fo:block>Cell 3
</fo:block>

</fo:table-cell>
</fo:table-row>
<fo:table-row>

<fo:table-cell column-number="1">
<fo:block>Cell 4
</fo:block>

</fo:table-cell>
<fo:table-cell column-number="2">

<fo:block>Cell 5
</fo:block>

</fo:table-cell>
<fo:table-cell column-number="3">

<fo:block>Cell 6
</fo:block>

</fo:table-cell>
</fo:table-row>

</fo:table-body>
</fo:table>

will produce a simple table

Cell 1 Cell 2 Cell 3
Cell 4 Cell 5 Cell 6

There are many other formatting objects and properties in the standard. Applications,
will at this stage, probably only implement a few of these objects.
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8.3 Combining XSLT and Formatting Objects

Replacing XML document elements with appropriate formatting objects and properties is
a rather tedious task to domanually. Instead, we can define a suitable XSL transformation
performing the required replacements. We start with some declarations and a reference
to XSL and FO.

<?xml version="1.0"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

For element in the original XML document, there is an XSLT template specifying how the
element should be replaced with the corresponding format object. Consider, e.g., a short
document containing a root doc , some para elements and title elements (sections and
subsections) as well as a header element. In the following, we specify an XSL stylesheet
for transforming the document.

The root of the document is matched and replaced with information in the following
template

<xsl:template match="doc">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format ">

<fo:layout-master-set>
<fo:simple-page-master master-name="single"

page-height="21cm"
page-width="29.7cm"
margin-top="1cm"
margin-bottom="2cm"
margin-left="2.5cm"
margin-right="2.5cm">

<fo:region-body margin-top="3cm"/>
<fo:region-before extent="3cm"/>
<fo:region-after extent="1.5cm"/>

</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-name="single">

<fo:static-content flow-name="xsl-region-before">
<xsl:apply-templates select="header"/>

</fo:static-content>
<fo:flow flow-name="xsl-region-body">

<xsl:apply-templates select="body"/>
</fo:flow>

</fo:page-sequence>
</fo:root>

Note that the element names starts with fo . This template adds some information about
the page, its height and with, margin sizes, etc. (in the layout-master-set ). It also
specifies some constant text that should appear on everey page in the static-content
element.
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A para element is matched by the following template.

<xsl:template match="para">
<fo:block font-size="12pt"

font-family="sans-serif"
line-height="15pt"
space-after.optimum="3pt"
text-align="start">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

The template will replace the para element with a block element, where a certain font
size, family, etc. are used.

title element with level attribute value of 1 is also made into a block element as
follows.

<xsl:template match="title[@level=’1’]">
<fo:block font-size="18pt"

font-family="sans-serif"
line-height="24pt"
space-after.optimum="15pt"
background-color="blue"
color="white"
text-align="center"
padding-top="3pt">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

A title of level 2 could be made into a similar block element.

A header is also changed into a block element

<xsl:template match="header">
<fo:block font-size="10pt">
<xsl:apply-templates/>
</fo:block>

</xsl:template>

Note that in all cases, we need the call for recursive processing (apply templates ) as
these elements may include other elements (and text). When text content is found in a
element it copied to the formatting objects file.

A complete XSL stylesheet for changing an XML document into one with formatting
objects can be found in the appendix.

Literature and references

The XSL standard is described at
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http://www.w3.org/Style/XSL/ and

http://www.xslinfo.com/ .

There is more information about using Xalan and FOP at

http://www.cs.helsinki.fi/group/xmltools/

and documentation also at

http://xml.apache.org/

Especially, note in the documentation on FOP what has been implmented of the XSL
standard and what has not.

Exercises

E-8-1 Try out the Apache Xalan formatter (http://xml.apache.org/ ). You find Xalan
in the directory

/home/group/xmltools/formatters/xalan/

Copy the file setup fop from the directory

/home/group/xmltools/formatters/exercise/

and run the command

source setup fop

in the directory. The command will update your CLASSPATH variable with the
correct path to the software libraries.

Copy the files SimpleTransform.java , birds.xml and birds.xsl from the
directory

/home/group/xmltools/formatters/exercise/

to your own test directory. Compile the file with the command

javac SimpleTransform.java

Study the output in birds.out of Xalan with the command

java SimpleTransform

Note: The program assumes the input to be in files birds.xml and birds.xsl
(no command line input).

Make small changes in the Java file, recompile and study the result.

E-8-2 Try out the Apache FOP formatter (http://xml.apache.org/ ). FOP translates
XML documents in the FO DTD format into PDF files.

You find FOP in the directory

/home/group/xmltools/formatters/fop/

Copy the file setup fop from the directory

/home/group/xmltools/formatters/exercise/

and run the command

source setup fop
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in the directory. The command will update your CLASSPATH variable with the
correct path to the software libraries.

Copy the files SimpleTransform2.java , normal.xml and normal.xsl from
the directory

/home/group/xmltools/formatters/exercise/

to your own test directory. Compile the file with the command

javac SimpleTransform2.java

Study the output in normal.fo of Xalan with the command

java SimpleTransform2

Note: The program assumes the input to be in files normal.xml and normal.xsl
(no command line input).

To use FOP as in

java org.apache.fop.apps.CommandLine normal.fo normal. pdf

Instead of these two steps, you can combine them as in

java org.apache.fop.apps.XalanCommandLine normal.xml n ormal.xsl
normal.pdf .

Make small changes in the XSL file, run again and study the result.

Make small changes in the FO file, run again and study the result.

E-8-3 Change the elements in the file personal.xml to formatting objects and use FOP
to turn it into PDF. You will have to look at the documentation of FOP at

http://www.cs.helsinki.fi/group/xmltools/

E-8-4 Change the elements in the file catalog.xml to formatting objects and use FOP
to turn it into PDF. You will have to look at the documentation of FOP at

http://www.cs.helsinki.fi/group/xmltools/

E-8-5 Write an XSL file for changing the file personal.xml into PDF. The XSL file will
add formatting objects and the result can be applied to FOP. You will have to look
at the documentation of XSL and FOP at

http://www.cs.helsinki.fi/group/xmltools/
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9 Other related standards

In the previous chapters we have taken a look at the following standards� The ExtensibleMarkup Language (XML) Version 1.0 (Second edition, W3C recom-
mendation from October 2000)� The Simple API for XML (SAX) Version 2.0 (de facto standard from May 2000)� The Document Object Model (DOM) Level 2 Core Specification Version 1.0 (W3C
recommendation from November 2000)� The Extensible Stylesheet Language (XSL) Version 1.0 (W3C candidate recom-
mendation from November 2000) including

– the Formatting Objects Language for specifying formatting semantics (FO
DTD), and

– the XSL Transformations (XSLT) Version 1.0 (W3C recommendation from Oc-
tober 2000).

The development of these standards continues and new updated versions are released
frequently.

The XML standard has several other related standards that we have not considered in
much detail in this course. The ”parent” of XML is the Standard Generalized Markup
Language (SGML) standard, a standard that is more complex than XML and which was
released in 1986. The Hypertext Markup Language (HTML) was created as an SGML
application, i.e., a certain HTML DTD was used to define HTML; however, the SGML
standard was not strictly followed, there has been several versions of HTML and espe-
cially vendors have made their own specific extensions to HTML.

XML was created as a hybrid between SGML and HTML, to combine the best features
from the two markup languages. One of the design goals has been to keep the XML
standard rather simple. This also means that there has been a need for adding extensions
to the standard: descriptions of how to process XML (SAX and DOM), how to specify
formatting information (XSL), etc.

In this chapter, we will take a look at some further extensions, namely,� XML Namespaces, which provide a simple method for qualifying element and at-
tribute names used in XML documents by associating them with namespaces iden-
tified by URI references (W3C recommendation from January 1999)� XML Linking. There are several standards concerned with linking in XML: The
XML Path Language (XPath) and the XML Pointer Language (XPointer) for locat-
ing any fragment of a document, and the XML Link Language (XLink) for includ-
ing hypertext links.� The Extensible HyperText Markup Language (XHTML) Version 1.0: A Reformu-
lation of HTML 4 in XML 1.0 (W3C Recommendation from January 2000)
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� XML Schema Part 1: Structures and Part 2: Datatypes (W3C Candidate Recom-
mendation from October 2000). This standard provides means for specifying more
constraints on document instances than what DTDs can do. For example, data-
types, complex data structures, etc.

9.1 Namespaces

A single XML document may have fragments that are defined in different DTDs. For
example, sometimes it might be useful to include HTML fragments such as tables which
are powerful and well supported by web browsers. Another example of documents that
mix several DTDs is the XSLT standard that mixes both formatting instructions and target
document tags in the same document.

There are two problems with mixing tags from different DTDs. First, we should be able
to identify to which DTD a particular element belongs. XML processors need perhaps to
treat the elements differently depending on this information. Also, we must avoid name
collisions: two different DTDs may define elements or attributes with the same names.
Then, of course, there is also a third problem with validating documents that contain
elements defined in different DTDs.

A namespace is an environment where all elements are unique. A single DTD is con-
sidered to own such a namespace. All references to either element or attribute names in
this namespace are unique. A document that contain references to several DTDs is said
to havemultiple namespaces.

In order to make names unique, a prefix is added to names such as

prefix:name

The prefix and the name are separated by a colon. This object is called a qualified name.
The prefix could in principle be any string that makes the qualified name unique. Most
standards can be identified through their location on the web, they all have a unique
uniform resource locator (URL). We can then use the URL referring to a certain standard
as the prefix. This is helpful in two aspects, the URL is usually know to anyone interested
in the certain DTD or it also helps to locate more information about the DTD of the URL
was not known the person who wants to use the DTD.

However, URLs are usually very long. Repeating them in every element and attribute
name would be tedious and make the document very long. They also contain characters
that are not allowed in element or attribute names. Fortunately, there is a mechanism for
defining short legal prefixes based on the URLs.

It should be noted that applications that understand namespaces do not have to be con-
nected to the Internet in any way! The URL is useful purely to distinguish between
names. The application will compare the URL against a list of standards that it can pro-
cess, but does not have to go and look up the standard at the specified web address.

Namespaces are defined using attributes. The attribute xmlns is used for this as in

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XS L/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
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The xmlns attribute is used to define the namespace at the same time as the prefix to
be used. The prefix is separated with a colon from the string xmlns in the definition.
Namespaces are typically defined in the root of the document, but they can be defined in
any element. Note that several namespaces can be defined in the same element.

The prefix is then used, for example as in the following XSL specification.

<xsl:template match="doc">
<fo:root>

<fo:layout-master-set>
<fo:simple-page-master fo:master-name="single">

...

Also attributes from one namespace can be defined in elements from another, as long as
we specify the prefix for the other namespace.

We can also define a default namespace; then we do not have to specify the prefix in
element names. The default namespace can be changed at any point in the document.
For example, we define the default namespace to bemybook.dtd as in

<book xmlns="mybook.dtd"
xmlns:other="http://www.w3.org/TR/REC-html40">
<p>This element comes from the mybook.dtd</p>
<other:p>And this element from the other</other:p>

Attributes automatically default to the namespace of the element they are specified in. In
the XSL example above, we could have had

<fo:simple-page-master master-name="single">

instead of the attribute name fo:master-name .

Now to the problem with parsing. If a document contains multiple namespaces, its DTD
must reflect this as well. We will then have to define a new DTD based on the ”original”
DTDs, if we want to be able to validate the document. We could have a rule such as

<!ELEMENT book (p | other:p)>

to allow the example above to be validated. In the future, it is expected that XML parsers
will be able to validate documents against the original DTDs so that we do not have to
write a new DTD containing the prefixes. (On the other hand, howwill we specify where
an element from namespace can appear in an element from another namespace?)

9.2 Linking in XML

For locating documents and document fragmentswe use uniform resource locates (URLs)
and the XML Path standard.
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9.2.1 URLs

The uniform resource locator (URL) is used to locate documents on the Internet. It can
also be used to identify documents on the intranet or on a local machine. URLs are
specified as

protocol://host/location/resource

When a file is stored on a local storage, there is no protocol involved and instead we use
the name file: such as

file:///home/fs/linden/test.xml

or

file:/c:/usr/linden/test.xml

Remote sources usually use theHTTP protocol or the FTP protocol. We can have

http://www.cs.helsinki.fi/u/linden/opetus/xml/index .html

URLs can be relative as in

../exercises/exercise1.html

and we can also include queries and fragments as in

http://www.cs.helsinki.fi/cgi/get-personnel?find=Ad dress&name=Pekka"

and

files/document#part6

These URLs can be used, e.g, in entities for locating files used in the document.

9.2.2 XPath

The XML Path standard (XPath) is used for exploiting the inside of XML documents.
Consider the following document.

<book>
<title>A new book</title>
<body>

<chapter>
<title>Introduction</title>

</chapter>
<appendix>

<title>Appendix title</appendix>
</appendix>

...
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The book title would probably be processed rather differently from the chapter titles.
How does a processor know to distinguish between the elements?

The XPath standard uses expressions to refer to document elements. The simple expres-
sion

book/title

identifies title elements are are direct children of book elements. Expressions identify
elements by their location or ’path’ in the document tree. Such a path can be relative or
absolute.

A relative path starts from a currently selected element (e.g, by parser). For example

chapter

refers to chapters that are children of the current element. This expression is actually an
abbreviation for

child::chapter

Note that this really means all children of the current element that are labeled chapter ,
not children of chapter elements! A path can include multiple steps separated by a slash
as in

chapter/title

or

child::chapter/child::title

Wild cards may be used to cover more possibilities. We can use a wild card to replace an
element as in

book/*/title

This expression would replace the expressions

book/chapter/title
book/appendix/title

but if the title element was located on different levels in the documetn tree (and not
always two levels below the book element), this approach would not find all titles.

An expressions such as node() would refer to all nodes, including elements, in a docu-
ment tree. Combined with the expression descendant-or-self:: as in

book/descendant-or-self::node()/title
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we would find all title elements located under the book element.

We have other expressions, such as self:: referring to the current node itself and
parent:: referring to the parent of the current node. An expression text() would refer
to the data content of a node, just as processing-instruction() and comment()
represent any of these types.

An absolute path does not rely on the current context. We refer to the root of the tree
with a slash / . The following expression

/book/title

would refer to title elements as children of book elements as children directly of the
root. We can also use a double slash to refer to all elements of a certain name. The
expression

//title

would refer to all title elements whatever the context.

We can refer to previous or next siblings with the expressions previous-sibling::
and next-sibling:: , and to ancestors (up to the root) or descendants (all nodes in the
subtree rooted at the current element) with the expressions ancestor:: and descendant:: .
We can also refer to a certain position within an element by position() as in

chapter[position()=2]

selecting the second chapter element. The above expression is equivalent to the expres-
sion

chapter[2]

The expression last() selects the last element in a list, the expression count() com-
putes the number of nodes in a list.

XPath also allows for testing attribute values, using boolean tests, and for string testing
and some simple arithmetics making a quite powerful way to locate document fragments
anywhere in a document tree.

9.2.3 XML links

The XML standard provides a very simple linking mechanism for linking in a single
document. Two special attribute types, ID and IDREF are used for this purpose. A
simple example defines a chapter and a possible reference as follows.

<!ELEMENT chapter (...)>
<!ATTLIST chapter target ID #REQUIRED>
...
<!ELEMENT Xref (...)>
<!ATTLIST Xref link IDREF #REQUIRED>
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We use the link as follows

In Chapter <Xref link="other_standards"/> we will discuss ...
...
<chapter target="other_standards">

The ID name must be unique within a document, all chapters must have a target at-
tribute and if we use the Xref element, we must specify the link attribute.

The XML Linking Language (XLink) standard extends this linking mechanism by allow-
ing for references to other documents, for using typed linkes, for locating multiple targets
and for pointing to and from read-only documents.

9.2.4 XPointer

The XML Pointer Language (XPointer) completes the XLink language by allowing to
point to document fragments that do not have a unique identifier, but that still have a
significant location in the document. The XPointer language relies heavily on the XPath
standard and uses expressions to refer to document fragments. For example, we have the
following XPointer expression

http://www.cs.helsinki.fi/books/mybook.xml#xptr(cha pter/title[3])

referring to the third chapter within a book located at the specified URL address; XPointer
uses the expression xptr() and the argument is an XPath expression.

9.3 XHTML

HTML is an application of SGML. However, since XML has become so popular, the de-
sire to combine HTML and XML somehow has arisen. For example, it would sometimes
be convenient to be able to embed HTML elements in XML and vice versa. There is belief
that the next version of HTML will be an XML application and there is now a recom-
mendation for the XML Hypertext Markup Language (XHTML) to fill this function.

Some additional constraints have been set on XHTML so that XML specifications are
followed. For example, as XML is case-sensitive, the XHTML DTD has been defined
using only lower-case names and only such names are allowed in XHTML documents.
Empty elements, such as the img element, must end with /> . If an element has not been
declared empty, both start and end tags must be used (the end tag may not be left out
as often is done in HTML, as browsers are still mostly able to interpret the HTML in the
correct way).

9.4 XML Schema

A schema is a model for describing the structure of information. The term is borrowed
from the database world where it is correspondingly used to describe the structure of
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information in relational tables. A schema describes more about information than a
DTD.While DTDs contain content models describing the order and sequence of elements,
schemas also specify datatypes of elements.

XML schemas are XMLdocuments. The vocabulary of XML schemas contain about thirty
elements and attributes for describing information structure. An element type could be
described as

<elementType name="person_name">
<sequence>

<elementTypeRef name="fname" minOccur="1" maxOccur="3" />
<elementTypeRef name="lname" minOccur="1" maxOccur="1" />

</sequence>
</elementType>

This description says that person_name elements must contain one to three fname
subelements, and exactly one lname subelement, in this order.

An fname element can be declared to contained only text as in

<elementType name="fname">
<mixed/>

</elementType>

XML Schema also allows definitions of datatypes. Here is a schema describing a data-
type.

<datatype name="currency">
<basetype name="decimal"/>
<precision>8</precision>
<scale>2</scale>

</datatype>

Currencies in this type are given as decimal numbers, they are allowed to contain eight
digits including two digits after the decimal point. An element using this type is de-
scribed as

<elementType name="unitcost">
<datatypeRef name="currency"/>

</elementType>

To check for ”validity”, we need an XML processor that understands schemas. Schemas
could be especially useful when exchanging data between databases or when used in
e-commerce.

9.5 Other standards

XMLQuery is a standard describing a query langauge for XML. XML Signature describes
how to make electronic singnatures in XML. XML Protocol is used for data communic-
ation. We refer to the web page of the XML standard at http://www.w3c.org/XML/
for further information about related standards.
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Literature and references

Please see http://www.w3c.org/XML/ for further information about related stand-
ards. Henri Ruini has made a list with explanations in Finnish on XML related standards
at

http://www.cs.Helsinki.FI/u/ruini/structure/xml/int ro/maarittelyt.html

Exercises

E-9-1 Take a look at http://www.w3c.org/XML/ . What related standards can you
find? Also look at http://www.xmlinfo.com and

http://www.cs.Helsinki.FI/u/ruini/structure/xml/int ro/maarittelyt.html .
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10 Synthesis

In this last chapter, we are going to make a synthesis of what we have learned in this
course. Figure 2 shows a schematic overview of one possible way producing and pro-
cessing XML. The figure includes also mentions of the tools we have used in the course.

Our purpose for XML processing is to standardise the production of good quality output
from, in principle, any kind of input data. As a means, we use XML as a canonical
representation to which we change our input and from which we render any output.

According to Figure 2 we start with input data in any format, such as plain text, HTML
pages, Word or WP documents, etc. The input can be available in files or extracted from
databases. In the first phase, we add markup to our data. We (probably) also have to
construct a XML DTD and define a style sheet (or several) for the data. In this course,
we have tested only one XML editor, but also used (non-XML) ordinary editors, such
as emacs, for adding markup manually. For automatically adding markup to existing
documents, there are several conversion programs (not mentioned in this course). In
principle, we can use any (procedural or other) markup available in the input data for
making this phase easier. A good help in DTD design may also be possible in-house
document styles or database schemas, etc. A useful help would also be to use a DTD
designer tool. The result of the markup phase is XML data, i.e., XML DTDs, document
instances and XSLT style sheets.

The XML processing phase will change our XML data into any specified output format.
XML processing includes parsing, transforming and formatting the data. An XML parser
may check for the well-formedness and/or validity of the XML data. If the XML parser
is combined with either the SAX or DOM interfaces, processing of the XML data can
be event-driven or tree-manipulated. An XSLT processor will read, in addition to the
XML document instances and XML DTDs, also an XSLT style sheet. It may produce
any kind of output (as the XSLT language is very powerful), but in the normal case it
produce an XML document containing formatting information (formatting objects and
properties). This information will be read by an XSL processor which produces formatted
output. The result of this phase could be data in any format, e.g., we could print out
data as plain text or have an XSL processor produce PDF. In this course, we have used
the Apahce Xerces XML parser, together with the SAX and DOM interfaces for making
XML transformations. We have also used the Apache Xalan XSLT processor (which uses
Xerces for parsing) for processing XSLT style sheets and producing either XSL documents
or some other kind of output. We have also used the Apache FOP (Formatting Objects
Processor) for producing PDF out of an XML document containing formatting objects or
from an XML document and a corresponding XSLT stylesheet.

Note that this is not the onlyway to process XML data, but only an example of a possible
dataflow that could be used to produce formatted output.
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A Short trilingual dictionary

English Finnish Swedish

attribute attribuutti tai määrite attribut
content sisältö innehåll
declaration määrittely deklaration
definition määrittely? definition
delimiter erotinmerkki avgränsningstecken
document dokumentti (myös asiakirja) dokument
document instance dokumentin ilmentymä dokumentinstans
document type definition dokumenttityypin (rakenne)määrittely dokumenttypsdefinition
DTD DTD DTD
element elementti element
end tag lopputunniste sluttagg
entity entiteetti entity
markup merkkaus uppmärkning
parser jäsentäjä, jäsennin parser, strukturerare
start tag alkutunniste starttagg
structure rakenne struktur
stylesheet tyylimäärittely stildefinition (?)
tag tunniste tagg, märkord
valid validi valid
well-formed hyvinmuodostettu välformad

Literature and references

Möller, Anders: SGML — en introduktion till Standard Generalized Markup Language. Stu-
dentlitteratur, 1994.

Ruini, Henri. Johdatus XML-tekniikkaan.
http://www.cs.Helsinki.FI/u/ruini/structure/xml/
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B ISO 639:1988 language codes

Note! There is a newer version of this standard, ISO 639-2, which uses three letter abbre-
viations for languages. (Will this standard be used in XML?)

aa Afar
ab Abkhazian
af Afrikaans
am Amharic
ar Arabic
as Assamese
ay Aymara
az Azerbaijani
ba Bashkir
be Byelorussian
bg Bulgarian
bh Bihari
bi Bislama
bn Bengali; Bangla
bo Tibetan
br Breton
ca Catalan
co Corsican
cs Czech
cy Welsh
da Danish
de German
dz Bhutani
el Greek
en English
eo Esperanto
es Spanish
et Estonian
eu Basque
fa Persian
fi Finnish
fj Fiji
fo Faroese
fr French
fy Frisian
ga Irish (Irish Gaelic)
gd Scots Gaelic (Scottish Gaelic)
gl Galician
gn Guarani
gu Gujarati
gv Manx Gaelic
ha Hausa
he Hebrew (formerly iw)
hi Hindi
hr Croatian
hu Hungarian
hy Armenian
ia Interlingua

id Indonesian (formerly in)
ie Interlingue
ik Inupiak
is Icelandic
it Italian
iu Inuktitut
ja Japanese
jw Javanese
ka Georgian
kk Kazakh
kl Greenlandic
km Cambodian
kn Kannada
ko Korean
ks Kashmiri
ku Kurdish
kw Cornish
ky Kirghiz
la Latin
lb Luxemburgish
ln Lingala
lo Laothian (recte Laotian)
lt Lithuanian
lv Latvian; Lettish
mg Malagasy
mi Maori
mk Macedonian
ml Malayalam
mn Mongolian
mo Moldavian
mr Marathi
ms Malay
mt Maltese
my Burmese
na Nauru
ne Nepali
nl Dutch
no Norwegian
oc Occitan
om (Afan) Oromo
or Oriya
pa Punjabi
pl Polish
ps Pashto, Pushto
pt Portuguese
qu Quechua
rm Rhaeto-Romance
rn Kirundi

ro Romanian
ru Russian
rw Kinyarwanda
sa Sanskrit
sd Sindhi
se Northern Sámi
sg Sangho
sh Serbo-Croatian
si Singhalese
sk Slovak
sl Slovenian
sm Samoan
sn Shona
so Somali
sq Albanian
sr Serbian
ss Siswati
st Sesotho
su Sundanese
sv Swedish
sw Swahili
ta Tamil
te Telugu
tg Tajik
th Thai
ti Tigrinya
tk Turkmen
tl Tagalog
tn Setswana
to Tonga
tr Turkish
ts Tsonga
tt Tatar
tw Twi
ug Uigur
uk Ukrainian
ur Urdu
uz Uzbek
vi Vietnamese
vo Volapük
wo Wolof
xh Xhosa
yi Yiddish (formerly ji)
yo Yoruba
za Zhuang
zh Chinese
zu Zulu
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C ISO 3166 country codes

Afghanistan AF
Albania AL
Algeria DZ
American Samoa AS
Andorra AD
Angola AO
Anguillax AI
Antarctica AQ
Antigua And Barbuda AG
Argentina AR
Armenia AM
Aruba AW
Australia AU
Austria AT
Azerbaijan AZ
Bahamas BS
Bahrain BH
Bangladesh BD
Barbados BB
Belarus BY
Belgium BE
Belize BZ
Benin BJ
Bermuda BM
Bhutan BT
Bolivia BO
Bosnia And Herzegowina BA
Botswana BW
Bouvet Island BV
Brazil BR
British Indian Ocean Territory IO
Brunei Darussalam BN
Bulgaria BG
Burkina Faso BF
Burundi BI
Cambodia KH
Cameroon CM
Canada CA
Cape Verde CV
Cayman Islands KY
Central African Republic CF
Chad TD
Chile CL
China CN
Christmas Island CX
Cocos (Keeling) Islands CC
Colombia CO
Comoros KM
Congo CG
Cook Islands CK

Costa Rica CR
Cote d’Ivoire CI
Croatia (local name: Hrvatska) HR
Cuba CU
Cyprus CY
Czech Republic CZ
Denmark DK
Djibouti DJ
Dominica DM
Dominican Republic DO
East Timor TP
Ecuador EC
Egypt EG
El Salvador SV
Equatorial Guinea GQ
Eritrea ER
Estonia EE
Ethiopia ET
Falkland Islands (Malvinas) FK
Faroe Islands FO
Fiji FJ
Finland FI
France FR
France, Metropolitan FX
French Guiana GF
French Polynesia PF
French Southern Territories TF
Gabon GA
Gambia GM
Georgia GE
Germany DE
Ghana GH
Gibraltar GI
Greece GR
Greenland GL
Grenada GD
Guadeloupe GP
Guam GU
Guatemala GT
Guinea GN
Guinea-Bissau GW
Guyana GY
Haiti HT
Heard And Mc Donald Islands HM
Honduras HN
Hong Kong HK
Hungary HU
Iceland IS
India IN
Indonesia ID
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Iran (Islamic Republic Of) IR
Iraq IQ
Ireland IE
Israel IL
Italy IT
Jamaica JM
Japan JP
Jordan JO
Kazakhstan KZ
Kenya KE
Kiribati KI
Korea, Democratic People’s Republic
Of

KP

Korea, Republic Of KR
Kuwait KW
Kyrgyzstan KG
Lao People’s Democratic Republic LA
Latvia LV
Lebanon LB
Lesotho LS
Liberia LR
Libyan Arab Jamahiriya LY
Liechtenstein LI
Lithuania LT
Luxembourg LU
Macau MO
Macedonia, The Former Yugoslav Re-
public Of

MK

Madagascar MG
Malawi MW
Malaysia MY
Maldives MV
Mali ML
Malta MT
Marshall Islands MH
Martinique MQ
Mauritania MR
Mauritius MU
Mayotte YT
Mexico MX
Micronesia, Federated States Of FM
Moldova, Republic Of MD
Monaco MC
Mongolia MN
Montserrat MS
Morocco MA
Mozambique MZ
Myanmar MM
Namibia NA
Nauru NR
Nepal NP
Netherlands NL
Netherlands Antilles AN

New Caledonia NC
New Zealand NZ
Nicaragua NI
Niger NE
Nigeria NG
Niue NU
Norfolk Island NF
Northern Mariana Islands MP
Norway NO
Oman OM
Pakistan PK
Palau PW
Panama PA
Papua New Guinea PG
Paraguay PY
Peru PE
Philippines PH
Pitcairn PN
Poland PL
Portugal PT
Puerto Rico PR
Qatar QA
Reunion RE
Romania RO
Russian Federation RU
Rwanda RW
Saint Kitts And Nevis KN
Saint Lucia LC
Saint Vincent And The Grenadines VC
Samoa WS
San Marino SM
Sao Tome And Principe ST
Saudi Arabia SA
Senegal SN
Seychelles SC
Sierra Leone SL
Singapore SG
Slovakia (Slovak Republic) SK
Slovenia SI
Solomon Islands SB
Somalia SO
South Africa ZA
South Georgia And The South Sand-
wich Islands

GS

Spain ES
Sri Lanka LK
St. Helena SH
St. Pierre And Miquelon PM
Sudan SD
Suriname SR
Svalbard And Jan Mayen Islands SJ
Swaziland SZ
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Sweden SE
Switzerland CH
Syrian Arab Republic SY
Taiwan, Province Of China TW
Tajikistan TJ
Tanzania, United Republic Of TZ
Thailand TH
Togo TG
Tokelau TK
Tonga TO
Trinidad And Tobago TT
Tunisia TN
Turkey TR
Turkmenistan TM
Turks And Caicos Islands TC
Tuvalu TV
Uganda UG
Ukraine UA
United Arab Emirates AE
United Kingdom GB ( UK
) United States US
United States Minor Outlying Islands UM
Uruguay UY
Uzbekistan UZ
Vanuatu VU
Vatican City State (Holy See) VA
Venezuela VE
Viet Nam VN
Virgin Islands (British) VG
Virgin Islands (U.S.) VI
Wallis And Futuna Islands WF
Western Sahara EH
Yemen YE
Yugoslavia YU
Zaire ZR
Zambia ZM
Zimbabwe ZW

vi



D XML examples

The following examples are included with Morphon XML editor examples [Tec00].

D.1 Example of an article DTD

<!ELEMENT br EMPTY>

<!ELEMENT article (meta,title,subtitle?, date?,author? ,source?,body)>
<!ATTLIST article

id ID #REQUIRED>
<!-- meta

contains data one wouldn’t expect to see in a printed renditi on of
the article.

-->
<!ELEMENT meta (topics)>
<!ELEMENT topics (topic+)>
<!ELEMENT topic (#PCDATA)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT subtitle (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ATTLIST author

email CDATA "webmaster@morphon.com">
<!ELEMENT source (#PCDATA)>
<!ELEMENT body (intro?,(p?,h1?,h2?,ul?,ol?,output?, li sting?, quote?,sidebar?)*
<!ELEMENT sidebar (sidetitle?,sidesubtitle?,sideautho r?,intro?,
(p?,h1?,h2?,ul?,ol?,quote?)*)>
<!ELEMENT sidetitle (#PCDATA)>
<!ELEMENT sidesubtitle (#PCDATA)>
<!ELEMENT sideauthor (#PCDATA)>
<!ENTITY % inline "#PCDATA | em | st | link | code">
<!ELEMENT p (%inline;)*>
<!ELEMENT output (#PCDATA)>
<!ELEMENT listing (#PCDATA)>
<!ELEMENT ol (li,(li?,ol?,ul?,p?)*)>
<!ELEMENT ul (li,(li?,ol?,ul?,p?)*)>
<!ELEMENT li (#PCDATA)>
<!ELEMENT h1 (#PCDATA)>
<!ELEMENT h2 (#PCDATA)>
<!ELEMENT em (#PCDATA)>
<!ELEMENT st (#PCDATA)>
<!ELEMENT link (#PCDATA)>
<!ATTLIST link

url CDATA "http://www.morphon.com/">
<!ELEMENT code (#PCDATA)>
<!ELEMENT intro (p+)>
<!ELEMENT quote (p+)>
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D.2 Example of an article instance

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE article SYSTEM "article.dtd">
<article id="mass-editing">

<meta>
<topics>

<topic>itnews</topic>
<topic>perl</topic>

</topics>
</meta>
<title>Changing strings in a bunch of files</title>
<date>June 22, 1999</date>
<author>Bart Schuller</author>
<body>

<intro>
<p>
A colleague reminded me that he again didn’t write down the ha ndy tricks one
can use for mass-editing files. So here they are. The example s in this article
use the GNU versions of common Unix tools, as well as perl5.
</p><p>
The recipes given here are incremental, which makes it easie r to
understand, adapt and debug them.
</p>

</intro>

<h1>Finding the files you want</h1>
<p>
First you need to ask yourself which files you want to operate on:
</p>
<h2>All files in a directory:</h2>
<listing>ls -1 *</listing>
<h2>All files in all directories:</h2>
<listing>find . -type f</listing>
<h2>All html files in all directories:</h2>
<listing>find . -name \*.html</listing>

<p>
More advanced file finding will follow after some other tric ks.
Read the manual for <em>find(1)</em> for lots more criteria , including
selection by modification time.
</p>

<h1>Changing a file using perl</h1>
<p>
Perl has a number of command line options that make it easy to w rite
powerful oneliners:
</p>
<h2>Put a program on the command line:</h2>
<listing>perl -e ’print scalar(localtime), "\n"’</listi ng>
<h2>Implicitly loop through all lines of all files:</h2>
<listing>perl -n -e ’print if /ˆschuller/’ /etc/passwd /et c/group</listing>
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<h2>Loop and print:</h2>
<listing>perl -p -e ’s/chuller/martass/’ /etc/passwd /et c/group</listing>
<h2>Edit files in place with backups</h2>
<listing>perl -p -i.bak -e ’s/Moron/Customer/g’ *.txt</l isting>

<p>
If you’re really sure of yourself you can tell perl to not gene rate
backup copies:

</p>
<listing>perl -pi -e ’&lt;statements&gt;’</listing>
<p>

If an edit with backups didn’t turn out quite right, you can mo ve the
backups back to their original names using the <em>rename</ em> perl script:

</p>
<sidebar><p>
The <em>rename</em> script is probably not installed at you r site, even
if the rest of perl is installed. It comes with the perl source
distribution but is also available as <link url="http://ww w.cpan.org/authors/id
<listing>rename ’s/\.bak$//’ *.bak</listing>

<h1>Putting two and two together</h1>
<p>
We’ve seen ways to generate lists of filenames. We’ve seen wa ys to
change files that are named on the command line. Here’s how yo u can
combine the techniques using the <code>xargs</code> comma nd. It runs the command
you give it over all files that you feed it through the standar d input.
You can experiment with xargs by putting for example <code>| xargs echo</code>
or <code>|xargs ls -l</code> after the file-finding comman ds from the first
section.
</p>
<h2>Finding files containing a certain string:</h2>
<listing>grep ’a string’ *.html</listing>
<h2>Listing only the filenames</h2>
<listing>grep -l ’a string’ *.html</listing>
<h2>Searching recursively, printing only filenames</h2>
<listing>find . -name \*.html | xargs grep -l ’a string’</li sting>
<p>

The result of this command is still a list of filenames, so you can
feed it to another instance of <code>| xargs grep -l ’somethi ng’</code> if you
want.

</p>
<h2>Changing "foo" to "bar" in all files under the current di rectory</h2>
<listing>find . -type f | xargs perl -pi -e ’s/\bfoo\b/bar/g ’</listing>

<h1>Developing your oneliner</h1>
<p>
As you can see, it’s best to develop the "select the right file s" and
the "change the files" parts independently. You can try out t he editing
operations by naming just one example file on the commandlin e:
</p>
<listing>perl -pi -e ’s/\b([a-z])/\u$1/g’ example.txt</ listing>
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<p>
The same kind of expressions can also be useful with the "rena me"
script:
</p>
<listing>
rename ’s/\.htm$/.html/’ *.htm

rename ’tr[A-Z][a-z]’ *
</listing>

<h1>Advanced "find" and "xargs" usage</h1>
<p>
The examples given here don’t work when your filenames conta in spaces.
Under windows, that’s where you’ll lose all hope of using com mand line
tools. Under GNU systems, you can use the following:
</p>
<h2>Create an interesting testcase and verify the breakage :</h2>
<listing>
touch "Program Files!"
find . -type f | xargs ls -l
</listing>
<h2>Have "find" print a null character as the filename delim iter</h2>
<listing>find . -type f -print0</listing>
<h2>Have xargs act on null-separated filenames:</h2>
<listing>find . -type f -print0 | xargs --null ls -l</listin g>
<h2>Remove the files the easy way:</h2>
<listing>rm Program&lt;tab&gt;</listing>
<h2>Alternatively, use your newfound knowledge:</h2>
<listing>find . -name ’* *’ -print0| xargs --null rm</listi ng>
</body>
</article>

D.3 Example of a play DTD

<!-- DTD for Shakespeare J. Bosak 1994.03.01, 1997.01.02 -- >
<!-- Revised for case sensitivity 1997.09.10 -->
<!-- Revised for XML 1.0 conformity 1998.01.27 (thanks to Ev e Maler) -->

<!ENTITY amp "&#38;">
<!ELEMENT PLAY (TITLE, FM, PERSONAE, SCNDESCR, PLAYSUBT, INDUCT?,

PROLOGUE?, ACT+, EPILOGUE?)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT FM (P+)>
<!ELEMENT P (#PCDATA)>
<!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>
<!ELEMENT PGROUP (PERSONA+, GRPDESCR)>
<!ELEMENT PERSONA (#PCDATA)>
<!ELEMENT GRPDESCR (#PCDATA)>
<!ELEMENT SCNDESCR (#PCDATA)>
<!ELEMENT PLAYSUBT (#PCDATA)>
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<!ELEMENT INDUCT (TITLE, SUBTITLE*, (SCENE+|(SPEECH|STA GEDIR|SUBHEAD)+))>
<!ELEMENT ACT (TITLE, SUBTITLE*, PROLOGUE?, SCENE+, EPILO GUE?)>
<!ELEMENT SCENE (TITLE, SUBTITLE*, (SPEECH | STAGEDIR | SUB HEAD)+)>
<!ELEMENT PROLOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH) +)>
<!ELEMENT EPILOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH) +)>
<!ELEMENT SPEECH (SPEAKER+, (LINE | STAGEDIR | SUBHEAD)+)>
<!ELEMENT SPEAKER (#PCDATA)>
<!ELEMENT LINE (#PCDATA | STAGEDIR)*>
<!ELEMENT STAGEDIR (#PCDATA)>
<!ELEMENT SUBTITLE (#PCDATA)>
<!ELEMENT SUBHEAD (#PCDATA)>

D.4 Example of a play instance

<?xml version="1.0"?>
<!DOCTYPE PLAY SYSTEM "play.dtd">

<PLAY>
<TITLE>The Tempest</TITLE>

<FM>
<P>Text placed in the public domain by Moby Lexical Tools, 19 92.</P>
<P>SGML markup by Jon Bosak, 1992-1994.</P>
<P>XML version by Jon Bosak, 1996-1998.</P>
<P>This work may be freely copied and distributed worldwide .</P>
</FM>

<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

<PERSONA>ALONSO, King of Naples.</PERSONA>
<PERSONA>SEBASTIAN, his brother.</PERSONA>
<PERSONA>PROSPERO, the right Duke of Milan.</PERSONA>
<PERSONA>ANTONIO, his brother, the usurping Duke of Milan. </PERSONA>
<PERSONA>FERDINAND, son to the King of Naples.</PERSONA>
<PERSONA>GONZALO, an honest old Counsellor.</PERSONA>

<PGROUP>
<PERSONA>ADRIAN</PERSONA>
<PERSONA>FRANCISCO</PERSONA>
<GRPDESCR>Lords.</GRPDESCR>
</PGROUP>

<PERSONA>CALIBAN, a savage and deformed Slave.</PERSONA>
<PERSONA>TRINCULO, a Jester.</PERSONA>
<PERSONA>STEPHANO, a drunken Butler.</PERSONA>
<PERSONA>Master of a Ship. </PERSONA>
<PERSONA>Boatswain. </PERSONA>
<PERSONA>Mariners. </PERSONA>
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<PERSONA>MIRANDA, daughter to Prospero.</PERSONA>
<PERSONA>ARIEL, an airy Spirit.</PERSONA>

<PGROUP>
<PERSONA>IRIS</PERSONA>
<PERSONA>CERES</PERSONA>
<PERSONA>JUNO</PERSONA>
<PERSONA>Nymphs</PERSONA>
<PERSONA>Reapers</PERSONA>
<GRPDESCR>presented by Spirits.</GRPDESCR>
</PGROUP>

<PERSONA>Other Spirits attending on Prospero.</PERSONA>
</PERSONAE>

<SCNDESCR>SCENE A ship at Sea: an island.</SCNDESCR>

<PLAYSUBT>THE TEMPEST</PLAYSUBT>

<ACT><TITLE>ACT I</TITLE>

<SCENE><TITLE>SCENE I. On a ship at sea: a tempestuous noise of thunder and lightning

<STAGEDIR>Enter a Master and a Boatswain</STAGEDIR>

<SPEECH>
<SPEAKER>Master</SPEAKER>
<LINE>Boatswain!</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Here, master: what cheer?</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Master</SPEAKER>
<LINE>Good, speak to the mariners: fall to’t, yarely,</LIN E>
<LINE>or we run ourselves aground: bestir, bestir.</LINE>
</SPEECH>

<STAGEDIR>Exit</STAGEDIR>
<STAGEDIR>Enter Mariners</STAGEDIR>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Heigh, my hearts! cheerly, cheerly, my hearts!</LIN E>
<LINE>yare, yare! Take in the topsail. Tend to the</LINE>
<LINE>master’s whistle. Blow, till thou burst thy wind,</L INE>
<LINE>if room enough!</LINE>
</SPEECH>
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<STAGEDIR>Enter ALONSO, SEBASTIAN, ANTONIO, FERDINAND,
GONZALO, and others</STAGEDIR>

<SPEECH>
<SPEAKER>ALONSO</SPEAKER>
<LINE>Good boatswain, have care. Where’s the master?</LIN E>
<LINE>Play the men.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>I pray now, keep below.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>ANTONIO</SPEAKER>
<LINE>Where is the master, boatswain?</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Do you not hear him? You mar our labour: keep your</LIN E>
<LINE>cabins: you do assist the storm.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>GONZALO</SPEAKER>
<LINE>Nay, good, be patient.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>When the sea is. Hence! What cares these roarers</LIN E>
<LINE>for the name of king? To cabin: silence! trouble us not .</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>GONZALO</SPEAKER>
<LINE>Good, yet remember whom thou hast aboard.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>None that I more love than myself. You are a</LINE>
<LINE>counsellor; if you can command these elements to</LI NE>
<LINE>silence, and work the peace of the present, we will</L INE>
<LINE>not hand a rope more; use your authority: if you</LINE >
<LINE>cannot, give thanks you have lived so long, and make</ LINE>
<LINE>yourself ready in your cabin for the mischance of</LI NE>
<LINE>the hour, if it so hap. Cheerly, good hearts! Out</LIN E>
<LINE>of our way, I say.</LINE>
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</SPEECH>

<STAGEDIR>Exit</STAGEDIR>

<SPEECH>
<SPEAKER>GONZALO</SPEAKER>
<LINE>I have great comfort from this fellow: methinks he</L INE>
<LINE>hath no drowning mark upon him; his complexion is</LI NE>
<LINE>perfect gallows. Stand fast, good Fate, to his</LINE >
<LINE>hanging: make the rope of his destiny our cable,</LIN E>
<LINE>for our own doth little advantage. If he be not</LINE>
<LINE>born to be hanged, our case is miserable.</LINE>
</SPEECH>

<STAGEDIR>Exeunt</STAGEDIR>
<STAGEDIR>Re-enter Boatswain</STAGEDIR>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Down with the topmast! yare! lower, lower! Bring</LI NE>
<LINE>her to try with main-course.</LINE>
<STAGEDIR>A cry within</STAGEDIR>
<LINE>A plague upon this howling! they are louder than</LIN E>
<LINE>the weather or our office.</LINE>
<STAGEDIR>Re-enter SEBASTIAN, ANTONIO, and GONZALO</STA GEDIR>
<LINE>Yet again! what do you here? Shall we give o’er</LINE>
<LINE>and drown? Have you a mind to sink?</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>SEBASTIAN</SPEAKER>
<LINE>A pox o’ your throat, you bawling, blasphemous,</LIN E>
<LINE>incharitable dog!</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Work you then.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>ANTONIO</SPEAKER>
<LINE>Hang, cur! hang, you whoreson, insolent noisemaker! </LINE>
<LINE>We are less afraid to be drowned than thou art.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>GONZALO</SPEAKER>
<LINE>I’ll warrant him for drowning; though the ship were</ LINE>
<LINE>no stronger than a nutshell and as leaky as an</LINE>
<LINE>unstanched wench.</LINE>
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</SPEECH>

<SPEECH>
<SPEAKER>Boatswain</SPEAKER>
<LINE>Lay her a-hold, a-hold! set her two courses off to</LI NE>
<LINE>sea again; lay her off.</LINE>
</SPEECH>

...

</ACT>
</PLAY>
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E Example SAX Applications

In the following we have two simple examples of SAX applications for parsing XML
documents. Both application will print out the events they encounters. The first applic-
ation uses a single DefaultHandler for processing all events. The second application
separates the ContentHandler from the

ErrorHandler .

E.1 A simple SAX application

import java.io.FileReader;
import org.xml.sax.XMLReader;
import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.helpers.XMLReaderFactory;
import org.xml.sax.helpers.DefaultHandler;

public class MySAXApp extends DefaultHandler
{

public static void main (String args[])
throws Exception

{
XMLReader xr =

XMLReaderFactory.createXMLReader(
"org.apache.xerces.parsers.SAXParser");

MySAXApp handler = new MySAXApp();
xr.setContentHandler(handler);
xr.setErrorHandler(handler);

// Parse each file provided on the
// command line.

for (int i = 0; i < args.length; i++) {
FileReader r = new FileReader(args[i]);
xr.parse(new InputSource(r));

}
}

public MySAXApp ()
{

super();
}

/////////////////////////////////////////////////// /////////
// Event handlers.
/////////////////////////////////////////////////// /////////
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public void startDocument ()
{

System.out.println("Start document");
}

public void endDocument ()
{

System.out.println("End document");
}

public void startElement (String uri, String name,
String qName, Attributes atts)

{
System.out.println("Start element: {" + uri + "}" + name);

}

public void endElement (String uri, String name, String qNa me)
{

System.out.println("End element: {" + uri + "}" + name);
}

public void characters (char ch[], int start, int length)
{

System.out.print("Characters: \"");
for (int i = start; i < start + length; i++) {

switch (ch[i]) {
case ’\\’:

System.out.print("\\\\");
break;

case ’"’:
System.out.print("\\\"");
break;

case ’\n’:
System.out.print("\\n");
break;

case ’\r’:
System.out.print("\\r");
break;

case ’\t’:
System.out.print("\\t");
break;

default:
System.out.print(ch[i]);
break;

}
}
System.out.print("\"\n");
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}

}

E.2 Another simple SAX application

/*--

Copyright (C) 2000 Brett McLaughlin. All rights reserved.

Redistribution and use in source and binary forms, with or wi thout modifica-
tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copy right notice,
this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above c opyright notice,
this list of conditions, the disclaimer that follows these c onditions,
and/or other materials provided with the distribution.

3. Products derived from this software may not be called "Jav a and XML", nor
may "Java and XML" appear in their name, without prior writte n permission
from Brett McLaughlin (brett@newInstance.com).

THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENTSHALL THE
JDOM PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software was originally created by Brett McLaughlin
<brett@newInstance.com>. For more information on "Java an d XML", please
see <http://www.oreilly.com/catalog/javaxml/> or <http ://www.newInstance.com>.

*/
import java.io.IOException;

import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.ErrorHandler;
import org.xml.sax.Locator;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.XMLReader;
import org.xml.sax.helpers.XMLReaderFactory;
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/**
* <b><code>SAXParserDemo</code></b> will take an XML file and parse it using
* SAX, displaying the callbacks in the parsing lifecycle.
*
* @author Brett McLaughlin
* @version 1.0
*/

public class SAXParserDemo {

/**
* <p>
* This parses the file, using registered SAX handlers, and ou tput
* the events in the parsing process cycle.
* </p>
*
* @param uri <code>String</code> URI of file to parse.
*/

public void performDemo(String uri) {
System.out.println("Parsing XML File: " + uri + "\n\n");

// Get instances of our handlers
ContentHandler contentHandler = new MyContentHandler();
ErrorHandler errorHandler = new MyErrorHandler();

try {
// Instantiate a parser
XMLReader parser =

XMLReaderFactory.createXMLReader(

// "com.jclark.xml.sax.Driver");
"org.apache.xerces.parsers.SAXParser");

// Register the content handler
parser.setContentHandler(contentHandler);

//parser.setFeature("http://xml.org/sax/features/va lidation",
true);

// Register the error handler
parser.setErrorHandler(errorHandler);

// Parse the document
parser.parse(uri);

} catch (IOException e) {
System.out.println("Error reading URI: " + e.getMessage( ));

} catch (SAXException e) {
System.out.println("Error in parsing: " + e.getMessage() );

}
}
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/**
* <p>
* This provides a command line entry point for this demo.
* </p>
*/

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("Usage: java SAXParserDemo [XML URI] ");
System.exit(0);

}

String uri = args[0];

SAXParserDemo parserDemo = new SAXParserDemo();
parserDemo.performDemo(uri);

}
}

/**
* <b><code>MyContentHandler</code></b> implements the S AX
* <code>ContentHandler</code> interface and defines call back
* behavior for the SAX callbacks associated with an XML
* document’s content.
*/

class MyContentHandler implements ContentHandler {

/** Hold onto the locator for location information */
private Locator locator;

/**
* <p>
* Provide reference to <code>Locator</code> which provide s
* information about where in a document callbacks occur.
* </p>
*
* @param locator <code>Locator</code> object tied to callb ack
* process
*/

public void setDocumentLocator(Locator locator) {
System.out.println(" * setDocumentLocator() called");
// We save this for later use if desired.
this.locator = locator;

}

/**
* <p>
* This indicates the start of a Document parse - this precedes
* all callbacks in all SAX Handlers with the sole exception
* of <code>{@link #setDocumentLocator}</code>.
* </p>
*
* @throws <code>SAXException</code> when things go wrong

xx



*/
public void startDocument() throws SAXException {

System.out.println("Parsing begins...");
}

/**
* <p>
* This indicates the end of a Document parse - this occurs afte r
* all callbacks in all SAX Handlers.</code>.
* </p>
*
* @throws <code>SAXException</code> when things go wrong
*/

public void endDocument() throws SAXException {
System.out.println("...Parsing ends.");

}

/**
* <p>
* This will indicate that a processing instruction (other th an
* the XML declaration) has been encountered.
* </p>
*
* @param target <code>String</code> target of PI
* @param data <code>String</code containing all data sent t o the PI.
* This typically looks like one or more attribute value
* pairs.
* @throws <code>SAXException</code> when things go wrong
*/

public void processingInstruction(String target, String data)
throws SAXException {

System.out.println("PI: Target:" + target + " and Data:" + d ata);
}

/**
* <p>
* This will indicate the beginning of an XML Namespace prefix
* mapping. Although this typically occur within the root ele ment
* of an XML document, it can occur at any point within the
* document. Note that a prefix mapping on an element triggers
* this callback <i>before</i> the callback for the actual el ement
* itself (<code>{@link #startElement}</code>) occurs.
* </p>
*
* @param prefix <code>String</code> prefix used for the nam espace
* being reported
* @param uri <code>String</code> URI for the namespace
* being reported
* @throws <code>SAXException</code> when things go wrong
*/

public void startPrefixMapping(String prefix, String uri ) {
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System.out.println("Mapping starts for prefix " + prefix +
" mapped to URI " + uri);

}

/**
* <p>
* This indicates the end of a prefix mapping, when the namespa ce
* reported in a <code>{@link #startPrefixMapping}</code> callback
* is no longer available.
* </p>
*
* @param prefix <code>String</code> of namespace being rep orted
* @throws <code>SAXException</code> when things go wrong
*/

public void endPrefixMapping(String prefix) {
System.out.println("Mapping ends for prefix " + prefix);

}

/**
* <p>
* This reports the occurrence of an actual element. It will in clude
* the element’s attributes, with the exception of XML vocabu lary
* specific attributes, such as
* <code>xmlns:[namespace prefix]</code> and
* <code>xsi:schemaLocation</code>.
* </p>
*
* @param namespaceURI <code>String</code> namespace URI t his element
* is associated with, or an empty
* <code>String</code>
* @param localName <code>String</code> name of element (wi th no
* namespace prefix, if one is present)
* @param rawName <code>String</code> XML 1.0 version of ele ment name:
* [namespace prefix]:[localName]
* @param atts <code>Attributes</code> list for this elemen t
* @throws <code>SAXException</code> when things go wrong
*/

public void startElement(String namespaceURI, String loc alName,
String rawName, Attributes atts)

throws SAXException {

System.out.print("startElement: " + localName);
if (!namespaceURI.equals("")) {

System.out.println(" in namespace " + namespaceURI +
" (" + rawName + ")");

} else {
System.out.println(" has no associated namespace");

}

for (int i=0; i<atts.getLength(); i++)
System.out.println(" Attribute: " + atts.getLocalName(i ) +

"=" + atts.getValue(i));

xxii



}

/**
* <p>
* Indicates the end of an element
* (<code>&lt;/[element name]&gt;</code>) is reached. Not e that
* the parser does not distinguish between empty
* elements and non-empty elements, so this will occur unifor mly.
* </p>
*
* @param namespaceURI <code>String</code> URI of namespac e this
* element is associated with
* @param localName <code>String</code> name of element wit hout prefix
* @param rawName <code>String</code> name of element in XML 1.0 form
* @throws <code>SAXException</code> when things go wrong
*/

public void endElement(String namespaceURI, String local Name,
String rawName)

throws SAXException {

System.out.println("endElement: " + localName + "\n");
}

/**
* <p>
* This will report character data (within an element).
* </p>
*
* @param ch <code>char[]</code> character array with chara cter data
* @param start <code>int</code> index in array where data st arts.
* @param end <code>int</code> index in array where data ends .
* @throws <code>SAXException</code> when things go wrong
*/

public void characters(char[] ch, int start, int end)
throws SAXException {

String s = new String(ch, start, end);
System.out.println("characters: " + s);

}

/**
* <p>
* This will report whitespace that can be ignored in the
* originating document. This is typically only invoked when
* validation is ocurring in the parsing process.
* </p>
*
* @param ch <code>char[]</code> character array with chara cter data
* @param start <code>int</code> index in array where data st arts.
* @param end <code>int</code> index in array where data ends .
* @throws <code>SAXException</code> when things go wrong
*/

xxiii



public void ignorableWhitespace(char[] ch, int start, int end)
throws SAXException {

String s = new String(ch, start, end);
System.out.println("ignorableWhitespace: [" + s + "]");

}

/**
* <p>
* This will report an entity that is skipped by the parser. Thi s
* should only occur for non-validating parsers, and then is s till
* implementation-dependent behavior.
* </p>
*
* @param name <code>String</code> name of entity being skip ped
* @throws <code>SAXException</code> when things go wrong
*/

public void skippedEntity(String name) throws SAXExcepti on {
System.out.println("Skipping entity " + name);

}

}

/**
* <b><code>MyErrorHandler</code></b> implements the SAX
* <code>ErrorHandler</code> interface and defines callba ck
* behavior for the SAX callbacks associated with an XML
* document’s errors.
*/

class MyErrorHandler implements ErrorHandler {

/**
* <p>
* This will report a warning that has occurred; this indicate s
* that while no XML rules were "broken", something appears
* to be incorrect or missing.
* </p>
*
* @param exception <code>SAXParseException</code> that o ccurred.
* @throws <code>SAXException</code> when things go wrong
*/

public void warning(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Warning**\n" +
" Line: " +

exception.getLineNumber() + "\n" +
" URI: " +

exception.getSystemId() + "\n" +
" Message: " +

exception.getMessage());
throw new SAXException("Warning encountered");
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}

/**
* <p>
* This will report an error that has occurred; this indicates
* that a rule was broken, typically in validation, but that
* parsing can reasonably continue.
* </p>
*
* @param exception <code>SAXParseException</code> that o ccurred.
* @throws <code>SAXException</code> when things go wrong
*/

public void error(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Error**\n" +
" Line: " +

exception.getLineNumber() + "\n" +
" URI: " +

exception.getSystemId() + "\n" +
" Message: " +

exception.getMessage());
throw new SAXException("Error encountered");

}
/**

* <p>
* This will report a fatal error that has occurred; this indic ates
* that a rule has been broken that makes continued parsing eit her
* impossible or an almost certain waste of time.
* </p>
*
* @param exception <code>SAXParseException</code> that o ccurred.
* @throws <code>SAXException</code> when things go wrong
*/

public void fatalError(SAXParseException exception)
throws SAXException {

System.out.println("**Parsing Fatal Error**\n" +
" Line: " +

exception.getLineNumber() + "\n" +
" URI: " +

exception.getSystemId() + "\n" +
" Message: " +

exception.getMessage());
throw new SAXException("Fatal Error encountered");

}
}
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F Example DOMApplication

In the following we have a simple example of a DOM applications for processing XML
documents. The application will print out certain characteristics of all the nodes in the
DOM tree.

import java.io.IOException;
import org.w3c.dom.Document;
import org.w3c.dom.DocumentType;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.w3c.dom.NamedNodeMap;
import org.apache.xerces.parsers.DOMParser;
import org.xml.sax.SAXException;

public class DOMParserDemo {

public void printNode (Node node, String indent) {
switch (node.getNodeType()) {
case Node.DOCUMENT_NODE:

System.out.println(indent + "<xml version=\"1.0\">");
NodeList nodes = node.getChildNodes();
if (nodes != null) {

for (int i=0; i < nodes.getLength(); i++) {
printNode (nodes.item(i), "");

}
}
break;

case Node.ELEMENT_NODE:
String name = node.getNodeName();
System.out.print(indent + "<" + name);
NamedNodeMap attributes = node.getAttributes();
for (int i = 0; i < attributes.getLength(); i++) {

Node current = attributes.item(i);
System.out.print(" " + current.getNodeName() + "=\"" +

current.getNodeValue() + "\"");
}
System.out.println(">");
NodeList children = node.getChildNodes ();
if (children != null) {

for (int i=0; i < children.getLength(); i++) {
printNode (children.item(i), indent + " ");

}
}
System.out.println (indent + "</" + name + ">");
break;

case Node.TEXT_NODE:
case Node.CDATA_SECTION_NODE:

System.out.println (indent+node.getNodeValue());
break;

case Node.PROCESSING_INSTRUCTION_NODE:
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System.out.println (indent + "<?" + node.getNodeName() + " " +
node.getNodeValue () + " ?>");

break;
case Node.ENTITY_REFERENCE_NODE:

System.out.println ("&" + node.getNodeName() + ";");
break;

case Node.DOCUMENT_TYPE_NODE:
DocumentType docType = (DocumentType)node;
System.out.print ("<!DOCTYPE " + docType.getName());
if (docType.getPublicId() != null) {

System.out.print ("PUBLIC \"" + docType.getPublicId () +
"\"");

} else {
System.out.print (" SYSTEM ");

}
System.out.println ("\"" + docType.getSystemId () + "\"") ;
break;

}
}

public void performDemo (String uri) {
System.out.println("Parsing XML File: " + uri + "\n");

DOMParser parser = new DOMParser ();

try {
parser.parse (uri);
Document doc = parser.getDocument ();
printNode (doc, "");

} catch (IOException e) {
System.out.println ("Error in reading " + e.getMessage()) ;

} catch (SAXException e) {
System.out.println ("Error in parsing " + e.getMessage()) ;

}
}

public static void main (String[] args) {
if (args.length != 1) {

System.out.println ("Usage: java DOMParserDemo [XML URI] ");
System.exit (0);

}
String uri = args[0];
DOMParserDemo parserDemo = new DOMParserDemo();
parserDemo.performDemo (uri);

}
}
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G Example XSL Specification and FO output

In the following a n example XSl specification with corresponding input and output when
procssed with XSLT.

G.1 XSL file

<?xml version="1.0"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ver sion="1.0"
xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:template match="doc">

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format ">

<fo:layout-master-set>
<fo:simple-page-master master-name="single"

page-height="21cm"
page-width="29.7cm"
margin-top="1cm"
margin-bottom="2cm"
margin-left="2.5cm"
margin-right="2.5cm">

<fo:region-body margin-top="3cm"/>
<fo:region-before extent="3cm"/>
<fo:region-after extent="1.5cm"/>

</fo:simple-page-master>

</fo:layout-master-set>

<fo:page-sequence master-name="single">

<fo:static-content flow-name="xsl-region-before">
<xsl:apply-templates select="header"/>

</fo:static-content>

<fo:flow flow-name="xsl-region-body">
<xsl:apply-templates select="body"/>

</fo:flow>
</fo:page-sequence>

</fo:root>
</xsl:template>

<xsl:template match="body">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="para">
<fo:block font-size="12pt"
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font-family="sans-serif"
line-height="15pt"
space-after.optimum="3pt"
text-align="start">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

<xsl:template match="title[@level=’1’]">
<fo:block font-size="18pt"

font-family="sans-serif"
line-height="24pt"
space-after.optimum="15pt"
background-color="blue"
color="white"
text-align="center"
padding-top="3pt">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

<xsl:template match="title[@level=’2’]">
<fo:block font-size="16pt"

font-family="sans-serif"
line-height="20pt"
space-before.optimum="10pt"
space-after.optimum="10pt"
text-align="start"
padding-top="3pt">

<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="header">
<fo:block font-size="10pt">
<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="page-number">
<fo:page-number/>

</xsl:template>

</xsl:stylesheet>

G.2 XML document: input

<doc>
<header>XML Recommendation - p. <page-number/></header>
<body>
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<title level="1">Extensible Markup Language (XML) 1.0</t itle>
<title level="2">Abstract</title>
<para>
The Extensible Markup Language (XML) is a subset of SGML that is
completely described in this document. Its goal is to enable
generic SGML to be served, received, and processed on the Web in
the way that is now possible with HTML. XML has been designed f or
ease of implementation and for interoperability with both S GML and HTML.
</para>
<para>
This document has been reviewed by W3C Members and other inte rested
parties and has been endorsed by the Director as a W3C Recomme ndation.
It is a stable document and may be used as reference material o r cited
as a normative reference from another document. W3C’s role i n making
the Recommendation is to draw attention to the specificatio n and to
promote its widespread deployment. This enhances the funct ionality
and interoperability of the Web.
</para>
<title level="2">Status of this Document</title>
<para>
This document specifies a syntax created by subsetting an ex isting,
widely used international text processing standard (Stand ard Generalized
Markup Language, ISO 8879:1986(E) as amended and corrected ) for use
on the World Wide Web. It is a product of the W3C XML Activity, d etails
of which can be found at http://www.w3.org/XML. A list of cur rent W3C
Recommendations and other technical documents can be found at
http://www.w3.org/TR.
</para>
</body>
</doc>

G.3 FOOutput

<?xml version="1.0" encoding="ISO-8859-1"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format ">
<fo:layout-master-set>
<fo:simple-page-master margin-right="2.5cm" margin-le ft="2.5cm"

margin-bottom="2cm" margin-top="1cm" page-width="29.7 cm"
page-height="21cm" master-name="single">

<fo:region-body margin-top="3cm"/>
<fo:region-before extent="3cm"/>
<fo:region-after extent="1.5cm"/>
</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-name="single">
<fo:static-content flow-name="xsl-region-before">
<fo:block font-size="10pt">XML Recommendation - p.<fo:p age-number/>
</fo:block></fo:static-content><fo:flow flow-name="x sl-region-body">

<fo:block padding-top="3pt" text-align="center" color= "white"
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background-color="blue" space-after.optimum="15pt" li ne-height="24pt"
font-family="sans-serif"
font-size="18pt">Extensible Markup Language (XML) 1.0</ fo:block>
<fo:block padding-top="3pt" text-align="start" space-a fter.optimum="10pt"
space-before.optimum="10pt" line-height="20pt" font-f amily="sans-serif"
font-size="16pt">Abstract</fo:block>
<fo:block text-align="start" space-after.optimum="3pt " line-height="15pt"
font-family="sans-serif" font-size="12pt">
The Extensible Markup Language (XML) is a subset of SGML that is c
ompletely described in this document. Its goal is to enable g eneric
SGML to be served, received, and processed on the Web in the wa y that
is now possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and HTML.
</fo:block>
<fo:block text-align="start" space-after.optimum="3pt "
line-height="15pt" font-family="sans-serif" font-size ="12pt">
This document has been reviewed by W3C Members and other inte rested
parties and has been endorsed by the Director as a W3C Recomme ndation.
It is a stable document and may be used as reference material o r cited
as a normative reference from another document. W3C’s role i n making
the Recommendation is to draw attention to the specificatio n and to
promote its widespread deployment. This enhances the funct ionality
and interoperability of the Web.
</fo:block>
<fo:block padding-top="3pt" text-align="start" space-a fter.optimum="10pt"
space-before.optimum="10pt" line-height="20pt" font-f amily="sans-serif"
font-size="16pt">Status of this Document</fo:block>
<fo:block text-align="start" space-after.optimum="3pt " line-height="15pt"
font-family="sans-serif" font-size="12pt">This docume nt specifies a
syntax created by subsetting an existing, widely used inter national
text processing standard (Standard Generalized Markup Lan guage,
ISO 8879:1986(E) as amended and corrected) for use on the Wor ld Wide
Web. It is a product of the W3C XML Activity, details of which c an
be found at http://www.w3.org/XML. A list of current W3C Rec ommendations
and other technical documents can be found at http://www.w3 .org/TR.
</fo:block>
</fo:flow></fo:page-sequence></fo:root>
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